The Status Reports on Computer and Information Sciences Education

计算机与信息科学教育现状报告

基本信息

项目摘要

There has been an explosive growth in the number of Internet-connected devices. The end-device users have also built a stack of rich and complex networks, derived from their social, personal and work groups. The prolific connections to end-devices and users, however, can be exploited as devastating vehicles for malware and worm attacks. Since exploiting the network connectivity lies at the heart of malware distribution, it becomes crucial to understand how the underlying network structure affects the malware propagation. Despite abundant literature on epidemic modeling and analysis, there is still a huge gap between theory and practice. This project aims to bridge the gap to better understand and combat epidemic spreading on large-scale networks with realistic cost constraints.This collaborative project brings together investigators from Texas State University and North Carolina State University to investigate the following inter-related research thrusts. It will (1) develop a theoretical framework to fully characterize the transient dynamics of epidemic spreading on a general graph (as opposed to a complete graph) to estimate and predict the likelihood of each node being infected for the future time, (2) develop a suite of readily usable algorithms to mitigate the spread of an epidemic to the extent possible under realistic constraints, and (3) develop a set of algorithms for efficient estimation and inference of network and epidemic parameters from incomplete and noisy data of epidemic cascades.This project could potentially have a high impact on a vast range of multi-disciplinary areas and applications where the study of epidemics has been necessary and crucial, including epidemiology, percolation in physics and chemistry, rumor spreading, information cascades, viral marketing, and spread of misinformation and fake news. In addition, this project will integrate research findings into education by curriculum development, involve diverse undergraduate and graduate students, especially women and students of underrepresented groups, and have them trained to thrive and contribute to the society in industrial and academic settings after graduation.All products developed during the course of this project will be publicly available and hosted at https://sites.google.com/view/nsf-cns-eun-lee-epidemic for at least three years after the closing of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连接互联网的设备数量出现了爆炸性增长。终端设备用户还建立了一系列丰富而复杂的网络,这些网络来自他们的社交、个人和工作组。然而,与终端设备和用户的大量连接可能被用作恶意软件和蠕虫攻击的毁灭性工具。由于利用网络连接是恶意软件分发的核心,因此了解底层网络结构如何影响恶意软件传播变得至关重要。尽管有大量关于流行病建模和分析的文献,但理论和实践之间仍然存在着巨大的差距。该项目旨在弥合这一差距,以更好地了解和抗击在具有现实成本约束的大规模网络上传播的流行病。这个合作项目汇集了来自德克萨斯州立大学和北卡罗来纳州立大学的研究人员,以调查以下相互关联的研究推动力。它将(1)开发一个理论框架,以在一般图(而不是完整图)上完全描述流行病传播的瞬时动态,以估计和预测未来时间每个节点被感染的可能性;(2)开发一套易于使用的算法,以在现实约束下尽可能地缓解流行病的传播;(3)开发一套算法,用于从不完整和有噪声的流行病级联数据中有效地估计和推断网络和流行病参数。该项目可能对广泛的多学科领域和应用产生很大的影响,在这些领域中,流行病的研究是必要和关键的,包括流行病学、物理和化学渗透、谣言传播、信息级联、病毒式营销以及错误信息和假新闻的传播。此外,该项目将通过课程开发将研究成果整合到教育中,让不同的本科生和研究生参与进来,特别是女性和代表不足群体的学生,并培训他们在毕业后在工业和学术环境中茁壮成长并为社会做出贡献。在该项目过程中开发的所有产品将在项目结束后公开提供并托管至少三年。该奖项反映了https://sites.google.com/view/nsf-cns-eun-lee-epidemic的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Mair其他文献

Bernard Mair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Mair', 18)}}的其他基金

Practical Training in Emission Tomography
发射断层扫描实践培训
  • 批准号:
    9972906
  • 财政年份:
    1999
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS) / Mathematical Methods in Imaging
数学科学的科学计算研究环境 (SCREMS)/成像中的数学方法
  • 批准号:
    9872023
  • 财政年份:
    1998
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Positron Emission Tomography: Modelling, Analysis and Algorithms
数学科学:正电子发射断层扫描:建模、分析和算法
  • 批准号:
    9623077
  • 财政年份:
    1996
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant

相似海外基金

Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
  • 批准号:
    24K20795
  • 财政年份:
    2024
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: SHF: An Automated and User-centered Framework for Reproducing System-level Concurrency Bugs by Analyzing Bug Reports
CRII:SHF:通过分析错误报告来重现系统级并发错误的自动化且以用户为中心的框架
  • 批准号:
    2348277
  • 财政年份:
    2024
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Practical study on bullying prevention at junior high schools through content analysis of bullying suicide investigation reports
基于欺凌自杀调查报告内容分析的初中欺凌预防实践研究
  • 批准号:
    23K02963
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Naturalistic effects of landmark scientific reports on public beliefs and attitudes
RAPID:具有里程碑意义的科学报告对公众信念和态度的自然影响
  • 批准号:
    2319884
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Hierarchical Sentiment Polarity Judgement and Explainability for Paragraphs and Sentences in Securities Reports
证券报告段落、句子的层次情感极性判断及解释
  • 批准号:
    23H03459
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2403747
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
Quantitative Study of Public Accountability based on Behavioral Public Administration: Analyzing Evaluation Reports Using Machine Learning and Experimental Method
基于行为公共管理的公共问责量化研究:利用机器学习和实验方法分析评估报告
  • 批准号:
    23K18770
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Floe SalivaData-AI: Develop a machine learning platform which personalises actionable health insight reports from consumer salivary biomarkers.
Floe SalivaData-AI:开发一个机器学习平台,根据消费者唾液生物标记物提供个性化的可操作健康洞察报告。
  • 批准号:
    10057341
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Collaborative R&D
Improving Science Communication via Results-Blind Selection: Lessons from Registered Reports
通过结果盲选改善科学传播:注册报告的经验教训
  • 批准号:
    2244878
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
  • 批准号:
    10593770
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了