Collaborative Research: SaTC: CORE: Medium: Cyber-threat Detection and Diagnosis in Multistage Manufacturing Systems through Cyber and Physical Data Analytics
协作研究:SaTC:核心:中:通过网络和物理数据分析进行多级制造系统中的网络威胁检测和诊断
基本信息
- 批准号:2019340
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In modern multistage manufacturing systems, with increased software-defined automation and control as well as monitoring of manufacturing assets across networks, exposure to cyber-attacks also grows. The cyber-threats may compromise the integrity of manufacturing assets (manufacturing systems and processes, machine tools, fabricated parts), reduce manufacturing productivity, and increase costs. Some cyber-threats including integrity attacks are only partially observable in cyberspace alone, and therefore need to be detected and diagnosed through inter-dependency analysis of both cyber and physical signals. Thus, there is a significant opportunity in exploring physical signals, together with cyber signals, to advance trustworthy manufacturing system research and design. This project brings together leading researchers from manufacturing systems, computer security, and electrical drives to develop and demonstrate a new methodology and tool for cyber-threat detection and diagnosis in multistage manufacturing systems. The cyber-security tool will monitor a variety of cyber and physical signals and perform cyber-threat detection and root cause diagnosis through advanced cyber-physical data fusion and taint analysis. The goal is to enable the prevention and mitigation of potential harms at the early stage, proactive and predictive maintenance, and countermeasures. This project attempts to integrate and analyze the process and quality signals, and the signals from the power networks and cyber networks of multistage manufacturing systems to detect and diagnose cyber-threats. This new systematic approach expects to capture new cyber-threats, especially data integrity attacks, that traditional cyber-security approaches may not capture. The proposed data analytics and methodology for integrating cyber and physical signals will advance a fundamental understanding of cyber-threat detection and diagnosis in multistage manufacturing systems and can broadly apply to other cyber-physical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代的多阶段制造系统中,随着软件定义的自动化和控制以及对网络跨网络的制造资产的监视,对网络攻击的暴露也会增长。网络威胁可能会损害制造资产(制造系统和流程,机床,制造零件)的完整性,降低制造生产率并提高成本。仅在网络空间中只能观察到一些网络威胁,包括完整性攻击,因此需要通过对网络和物理信号的相互依赖性分析来检测和诊断。因此,探索物理信号以及网络信号有很大的机会来推进值得信赖的制造系统研究和设计。该项目汇集了制造系统,计算机安全和电气驱动器的领先研究人员,以开发和演示一种新的方法和工具,用于在多阶段制造系统中进行网络威胁检测和诊断。网络安全工具将监视各种网络和物理信号,并通过先进的网络物理数据融合和污点分析来执行网络威胁性检测和根源诊断。目的是在早期阶段预防和减轻潜在危害,积极主动和预测性维护以及对策。 该项目试图集成和分析流程和质量信号,以及来自多阶段制造系统的电力网络和网络网络的信号,以检测和诊断网络威胁。这种新的系统方法希望捕获传统的网络安全方法可能无法捕获的新的网络威胁,尤其是数据完整性攻击。整合网络和物理信号的拟议数据分析和方法将对多阶段制造系统中的网络威胁检测和诊断进行基本理解,并可以广泛地应用于其他网络物理系统。这奖反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的crietia crietia crietia crietia crietia crietia criteria criperia criperia crietia crietia criperia criperia criperia criperia recteria recteria rection the Appliatia奖。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physical Devices-Agnostic Hybrid Fuzzing of IoT Firmware
- DOI:10.1109/jiot.2023.3303780
- 发表时间:2023-12
- 期刊:
- 影响因子:10.6
- 作者:Lingyun Situ;Chi Zhang;Le Guan;Zhiqiang Zuo;Linzhang Wang;Xuandong Li;Peng Liu;Jin Shi
- 通讯作者:Lingyun Situ;Chi Zhang;Le Guan;Zhiqiang Zuo;Linzhang Wang;Xuandong Li;Peng Liu;Jin Shi
Identifying Channel Related Vulnerabilities in Zephyr Firmware
- DOI:10.1109/ithings-greencom-cpscom-smartdata-cybermatics55523.2022.00055
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Devansh Rajgarhia;Peng Liu;S. Sural
- 通讯作者:Devansh Rajgarhia;Peng Liu;S. Sural
A co-design adaptive defense scheme with bounded security damages against Heartbleed-like attacks
一种针对类似 Heartbleed 的攻击具有有限安全损害的协同设计自适应防御方案
- DOI:10.1109/tifs.2021.3113512
- 发表时间:2021
- 期刊:
- 影响因子:6.8
- 作者:Hu, Zhisheng;Chen, Ping;Zhu, Minghui;Liu, Peng
- 通讯作者:Liu, Peng
Recompose Event Sequences vs. Predict Next Events: A Novel Anomaly Detection Approach for Discrete Event Logs
- DOI:10.1145/3433210.3453098
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Lun-Pin Yuan;Peng Liu;Sencun Zhu
- 通讯作者:Lun-Pin Yuan;Peng Liu;Sencun Zhu
Semantics-Preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection
- DOI:10.1109/tdsc.2022.3153844
- 发表时间:2020-09
- 期刊:
- 影响因子:7.3
- 作者:Lan Zhang;Peng Liu;Yoon-Ho Choi;Ping Chen
- 通讯作者:Lan Zhang;Peng Liu;Yoon-Ho Choi;Ping Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Liu其他文献
Experimental Comparison of Optical Loss between the Silicon-on-Insulator Waveguide Corner Mirrors and Curves
绝缘体上硅波导角镜光损耗与曲线的实验比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
DeGui Sun;Q. Zheng;Peng Liu;T. Hall - 通讯作者:
T. Hall
Semiparametric Trend Analysis for Stratified Recurrent Gap Times Under Weak Comparability Constraint
弱可比性约束下分层循环间隙时间的半参数趋势分析
- DOI:
10.1007/s12561-023-09376-8 - 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Peng Liu;Yijian Huang;K. C. G. Chan;Ying Q. Chen - 通讯作者:
Ying Q. Chen
Enolesters as chain end-functionalizing agents for the living ring opening metathesis polymerization
烯醇酯作为活性开环复分解聚合的链端官能化剂
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Peng Liu;Mohammad Yasir;Helena Kurzen;N. Hanik;M. Schäfer;Andreas F. M. Kilbinger - 通讯作者:
Andreas F. M. Kilbinger
Cloning of BPI gene from Qianshao spot pig and its amino acids sequence analysis: Cloning of BPI gene from Qianshao spot pig and its amino acids sequence analysis
前哨斑猪BPI基因的克隆及其氨基酸序列分析: 前哨斑猪BPI基因的克隆及其氨基酸序列分析
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lin Wei;Bin Chen;Shan;Shen;Peng Liu - 通讯作者:
Peng Liu
The effects of transportation system improvements on urban performances with heterogeneous residents
交通系统改善对异质居民城市绩效的影响
- DOI:
10.1016/j.jmse.2020.09.002 - 发表时间:
2020-09 - 期刊:
- 影响因子:6.6
- 作者:
Shu-Xian Xu;Tian-Liang Liu;Ning Jia;Pengfei Wang;Peng Liu;Shoufeng Ma - 通讯作者:
Shoufeng Ma
Peng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Liu', 18)}}的其他基金
Computational Studies of Selective C-H Functionalization Reactions
选择性 C-H 官能化反应的计算研究
- 批准号:
2247505 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Frontera Travel Grant: Computational Studies of Transition Metal-Catalyzed Reactions
Frontera 旅行补助金:过渡金属催化反应的计算研究
- 批准号:
2031953 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Enabling Precise and Automated Insecurity Analysis of Middleware on Mobile Platforms
SaTC:核心:小型:协作:实现移动平台上中间件的精确和自动不安全分析
- 批准号:
1814679 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Computational Studies of Transition Metal Catalyzed Reactions in Organic Synthesis
职业:有机合成中过渡金属催化反应的计算研究
- 批准号:
1654122 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Towards Agile and Privacy-Preserving Cloud Computing
TWC:小型:协作:迈向敏捷和隐私保护的云计算
- 批准号:
1422594 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Examining Users' Collective Privacy Management for Online Social Networks
职业:检查在线社交网络用户的集体隐私管理
- 批准号:
0953749 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research:Secure and Resilient Channel Allocation in Multi-Radio Wireless Networks
NeTS:小型:协作研究:多无线电无线网络中的安全和弹性信道分配
- 批准号:
0916469 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Towards Self-Protecting Data Centers: A Systematic Approach
TC:媒介:协作研究:迈向自我保护数据中心:系统方法
- 批准号:
0905131 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: Transparent Damage Quarantine and Recovery in Transactional Applications and Web Services
合作研究:CT-T:事务应用程序和 Web 服务中的透明损坏隔离和恢复
- 批准号:
0716479 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Capacity Building in Information Assurance at Penn State University
宾夕法尼亚州立大学信息保障能力建设
- 批准号:
0416827 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant