RII Track-2 FEC: IGM--A Framework for Harnessing Big Hydrological Datasets for Integrated Groundwater Management
RII Track-2 FEC:IGM——利用大水文数据集进行地下水综合管理的框架
基本信息
- 批准号:2019561
- 负责人:
- 金额:$ 599.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groundwater depletion is a major water management problem that is of global concern. Locally, the Southeastern US has experienced increased water stress due to the mismanagement of its water resources, especially during drought periods. Rapid agricultural expansion and unplanned urbanization have further aggravated this problem. Given that water-related industries contribute to over 150 billion of US dollars in annual revenues, the long-term sustainability of freshwater resources is of paramount importance to this region. While mapping the availability of water in topsoil, reservoirs, and rivers continues to receive much attention, mapping of groundwater storage changes at a fine spatiotemporal resolution over large areas is currently lacking. This is important because groundwater contributes around 40 percent of freshwater usage in the conterminous US, and its contribution in some Southeastern states, e.g., Mississippi, is over two-thirds. Groundwater also indirectly sustains surface water resources, and hence its actual contribution to freshwater usage is even larger than reported. The goal of this project is to harness the big data to implement an integrated groundwater management (IGM) framework that will provide new scientific insights and make useful groundwater predictions at an unprecedented fine spatiotemporal resolution. The IGM framework integrates hydrological, geological, and satellite datasets with machine learning tools and high-resolution simulation models. The information generated will be made available to a wide group of stakeholders through a web-based platform to help develop engineering and policy solutions. The research tasks and workforce development efforts will be jointly accomplished by a team of interdisciplinary researchers at five universities: The University of Alabama, Louisiana State University, University of Mississippi, Tuskegee University, and Southern University.Prediction of groundwater storage changes at fine spatiotemporal scales is challenging due to lack of information about recharge fluxes, which are influenced by variations in natural land surface processes (e.g., precipitation and evapotranspiration) and anthropogenic interventions such as irrigation and pumping. The inability to map subsurface heterogeneities is another major limitation. In this study, we will harness big hydrologic datasets using science-based process models and machine learning tools to develop groundwater level and recharge maps at fine spatiotemporal scales. Novel contributions from this effort will include the development of new machine learning algorithms (such as convolutional and long-short term memory networks constrained by conservation principles), a new hydrogeological database derived from well log data, new machine learning tools for developing geological cross-sections from well log data, physically-realistic process models that use novel methods for estimating plant transpiration under climatic stress, and a new web platform for sharing groundwater level and recharge datasets. The integrated groundwater management framework will help answer several important science questions: 1) How well can we predict the groundwater levels and recharge at fine temporal resolution? 2) How different is the efficiency of data driven models compared to process-based models for obtaining groundwater recharge, and what are the advantages of a hybrid approach? and 3) What are the physical controls on groundwater drought-recovery processes?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地下水枯竭是全球关注的一个重大水资源管理问题。在当地,美国东南部由于水资源管理不善,特别是在干旱时期,水资源压力增加。农业的迅速扩张和无计划的城市化进一步加剧了这一问题。鉴于与水有关的行业每年贡献超过1 500亿美元的收入,淡水资源的长期可持续性对本区域至关重要。虽然绘制表土、水库和河流中的水的可用性仍然受到很大的关注,但目前缺乏以精细的时空分辨率绘制大面积地下水储存变化的地图。这一点很重要,因为地下水占美国周边淡水使用量的40%左右,而在一些东南部州,例如,密西西比超过三分之二。地下水还间接维持地表水资源,因此,地下水对淡水使用的实际贡献甚至比报告的还要大。该项目的目标是利用大数据实施综合地下水管理(IGM)框架,该框架将提供新的科学见解,并以前所未有的精细时空分辨率进行有用的地下水预测。IGM框架将水文、地质和卫星数据集与机器学习工具和高分辨率模拟模型相集成。 所产生的信息将通过一个网络平台提供给广大利益攸关方,以帮助制定工程和政策解决方案。研究任务和劳动力发展工作将由五所大学的跨学科研究人员团队共同完成:亚拉巴马大学、路易斯安那州立大学、密西西比大学、塔斯基吉大学和南方大学。由于缺乏有关补给通量的信息,在精细时空尺度上预测地下水储量变化具有挑战性,其受到自然陆地表面过程中的变化的影响(例如,降水和蒸散)和人为干预,如灌溉和抽水。无法绘制地下非均质性是另一个主要限制。在这项研究中,我们将利用基于科学的过程模型和机器学习工具来利用大型水文数据集,以精细的时空尺度开发地下水位和补给图。这项工作的新贡献将包括开发新的机器学习算法(例如受守恒原理约束的卷积和长短期记忆网络)、从测井数据导出的新的水文地质数据库、用于从测井数据开发地质横截面的新的机器学习工具、使用新方法估计气候压力下植物蒸腾的物理现实过程模型,以及一个新的网络平台,用于共享地下水位和补给数据集。综合地下水管理框架将有助于回答几个重要的科学问题:1)我们如何能够预测地下水位和补给在精细的时间分辨率?2)与基于过程的模型相比,数据驱动模型获得地下水补给的效率有何不同?混合方法的优势是什么?3)地下水干旱恢复过程的物理控制因素是什么?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PyTheis—A Python Tool for Analyzing Pump Test Data
PyTheis——用于分析泵测试数据的 Python 工具
- DOI:10.3390/w13162180
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Chang, Sun Woo;Memari, Sama S.;Clement, T. Prabhakar
- 通讯作者:Clement, T. Prabhakar
Comparison of Data-Driven Groundwater Recharge Estimates with a Process-Based Model for a River Basin in the Southeastern USA
美国东南部河流流域数据驱动的地下水补给估算与基于过程的模型的比较
- DOI:10.1061/jhyeff.heeng-5882
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Gonzalez, Mauricio Osorio;Preetha, Pooja;Kumar, Mukesh;Clement, T. Prabhakar
- 通讯作者:Clement, T. Prabhakar
Multi-Objective Optimization of Aquifer Storage and Recovery Operations under Uncertainty via Machine Learning Surrogates
- DOI:10.1016/j.jhydrol.2022.128299
- 发表时间:2022-08
- 期刊:
- 影响因子:6.4
- 作者:Hamid Vahdat-Aboueshagh;F. Tsai;Emad Elwy Habib;T. Prabhakar Clement
- 通讯作者:Hamid Vahdat-Aboueshagh;F. Tsai;Emad Elwy Habib;T. Prabhakar Clement
Accounting for uncertainty in complex alluvial aquifer modeling by Bayesian multi-model approach
通过贝叶斯多模型方法解释复杂冲积含水层建模的不确定性
- DOI:10.1016/j.jhydrol.2021.126682
- 发表时间:2021
- 期刊:
- 影响因子:6.4
- 作者:Yin, Jina;T.-C. Tsai, Frank;Kao, Shih-Chieh
- 通讯作者:Kao, Shih-Chieh
A perspective on the state of Deepwater Horizon oil spill related tarball contamination and its impacts on Alabama beaches
深水地平线石油泄漏相关的沥青球污染状况及其对阿拉巴马州海滩影响的视角
- DOI:10.1016/j.coche.2022.100799
- 发表时间:2022
- 期刊:
- 影响因子:6.6
- 作者:Clement, T Prabhakar;John, Gerald F
- 通讯作者:John, Gerald F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prabhakar Clement其他文献
Remediation of groundwater and soil environments: an emerging field of research in Korea
- DOI:
10.1007/bf02913920 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Kang-Kun Lee;Prabhakar Clement - 通讯作者:
Prabhakar Clement
Prabhakar Clement的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prabhakar Clement', 18)}}的其他基金
EPSCoR Workshop on Water Security Planning and Management
EPSCoR 水安全规划和管理研讨会
- 批准号:
1854631 - 财政年份:2019
- 资助金额:
$ 599.85万 - 项目类别:
Standard Grant
Development of a Pyrolysis GC/MS Facility for Characterizing Oil-Contaminated Water, Sediment and Seafood Samples
开发用于表征受油污染的水、沉积物和海鲜样品的热解 GC/MS 设备
- 批准号:
1057541 - 财政年份:2010
- 资助金额:
$ 599.85万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
- 批准号:
2316366 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316128 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316126 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
- 批准号:
2316271 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
- 批准号:
2316296 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316400 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Center for Climate Conscious Agricultural Technologies (CCAT)
RII Track-2 FEC:气候意识农业技术中心 (CCAT)
- 批准号:
2316502 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Promoting N2O- and CO2-Relieved Nitrogen Fertilizers for Climate Change-Threatened Midwest Farming and Ranching
合作研究:RII Track-2 FEC:为受气候变化威胁的中西部农业和牧场推广不含 N2O 和 CO2 的氮肥
- 批准号:
2316482 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
RII-Track 2 FEC: Advancing Social and Environmental Equity through Plastics Research: Education, Innovation, and Inclusion (ASPIRE)
RII-Track 2 FEC:通过塑料研究促进社会和环境公平:教育、创新和包容性 (ASPIRE)
- 批准号:
2316351 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
- 批准号:
2316367 - 财政年份:2023
- 资助金额:
$ 599.85万 - 项目类别:
Cooperative Agreement