RUI: Unraveling the physiological roles of multidrug efflux pumps in bacteria

RUI:揭示细菌中多药外排泵的生理作用

基本信息

项目摘要

This project will determine how a multidrug efflux (MDR) pump of the bacterium Escherichia coli, regulates gene expression and cell physiology. Efflux is an essential function in all life forms. Gram-negative bacteria such as E. coli possess MDR pumps that are highly-conserved and play a pivotal role in cell physiology and bacterial adaptation to internal and environmental changes. These MDR pumps have a unique ability to expel a wide range of molecules out of the cell. These molecules include toxic compounds entering the cells from the outside such as bile salts and antibiotics; as well as molecules internally produced by these bacteria involved in functions such as bacterial growth, signaling, and capturing iron or other limited nutrients. Among MDR pumps, the AcrAB-TolC pump of E. coli is the most well-known because it is the main MDR pump in this bacterium, which is an important model organism, gut commensal, pathogen, and is widely used in biotechnology. This pump was first studied because of its role in conferring antibiotic resistance by effluxing different antibiotics. Recent findings indicate that this pump also plays a central role in regulating gene expression and bacterial physiology; however, how this pump controls these functions remains unknown. By identifying the molecules internally produced by E. coli that are effluxed by the AcrAB-TolC pump, and how this pump and its regulators control gene expression and physiology, this project will make multiple significant contributions to science and the overall well-being of society. More specifically, this project will advance our understanding of how bacteria maintain their internal balance and adapt to new environments, and offer novel insights into how to bioengineer bacteria to improve the production of biofuels and other compounds of industrial interest. The broader outcomes of this project stem from its integration into a re-designed Microbial Physiology course at California State University, Northridge (CSUN). CSUN is a primarily undergraduate and minority-serving institution. Thus, this project will expand the number of students from diverse backgrounds that have access to hands-on research, which is essential to train and inspire the next generation of scientist and engineers.MDR pumps regulate gene expression, metabolism, stress responses, bacterial motility, and other physiological processes. However, the molecular mechanisms that allow these pumps to control all these processes remain unknown. Especially intriguing is the question of how MDR pumps, which are located in the cell envelope, can regulate gene expression. Our central hypothesis is that the main function of the AcrAB-TolC pump is to efflux cellular metabolites, whereas the transcriptional repressor AcrR senses the concentrations of different pump substrates and then acts as a global regulator of gene expression. This hypothesis is based on recent findings from the PI’s laboratory and other groups. To attain the overall objective, we will pursue two specific aims: 1) Identify the genes directly regulated by AcrR and the metabolites that control AcrR function; and 2) Identify the metabolites that bind to AcrAB-TolC and the effect of AcrB-AcrZ interactions in modulating the function of this pump. We will accomplish these aims by employing bioinformatics and electrophoretic mobility shift assays to identify genes directly regulated by AcrR; as well as fluorescence polarization binding assays to identify the cellular metabolites effluxed by AcrAB-TolC, determine the effect of the small protein AcrZ on substrate recognition by this pump, and identify which pump substrates bind to and regulate AcrR function. Ultimately, this project will uncover the functional link between pump function and gene regulation by identifying which cellular metabolites are both pump substrates and AcrR ligands.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将确定大肠杆菌的多药外排(MDR)泵如何调节基因表达和细胞生理学。外排是所有生命形式的基本功能。革兰氏阴性菌如E.大肠杆菌具有高度保守的MDR泵,在细胞生理学和细菌适应内部和环境变化中起关键作用。这些MDR泵具有将多种分子排出细胞的独特能力。这些分子包括从外部进入细胞的有毒化合物,如胆汁盐和抗生素;以及由这些细菌内部产生的分子,这些分子参与细菌生长,信号传导和捕获铁或其他有限的营养物质等功能。MDR泵中,E.大肠杆菌是最著名的,因为它是该细菌中的主要MDR泵,该细菌是重要的模式生物、肠道寄生虫、病原体,并且在生物技术中被广泛使用。这种泵首先被研究,因为它的作用,赋予抗生素耐药性的流出不同的抗生素。最近的研究结果表明,这种泵在调节基因表达和细菌生理学方面也起着核心作用;然而,这种泵如何控制这些功能仍然未知。通过鉴定E.通过AcrAB-TolC泵排出的大肠杆菌,以及该泵及其调节剂如何控制基因表达和生理,该项目将为科学和社会的整体福祉做出多项重大贡献。更具体地说,该项目将促进我们对细菌如何保持内部平衡和适应新环境的理解,并为如何生物工程细菌以提高生物燃料和其他工业化合物的生产提供新的见解。这个项目的更广泛的成果源于它的整合到一个重新设计的微生物生理学课程在加州州立大学,北岭(CSUN)。CSUN是一个主要为本科生和少数民族服务的机构。因此,该项目将扩大来自不同背景的学生的数量,他们可以获得实践研究,这对培养和激励下一代科学家和工程师至关重要。MDR泵调节基因表达,代谢,应激反应,细菌运动和其他生理过程。然而,允许这些泵控制所有这些过程的分子机制仍然未知。特别有趣的是位于细胞包膜中的MDR泵如何调节基因表达的问题。我们的中心假设是,AcrAB-TolC泵的主要功能是流出细胞代谢物,而转录抑制因子AcrR感测不同泵底物的浓度,然后充当基因表达的全局调节器。这一假设是基于PI实验室和其他团体的最新发现。为了实现总体目标,我们将追求两个具体目标:1)鉴定由AcrR直接调控的基因和控制AcrR功能的代谢物; 2)鉴定与AcrAB-TolC结合的代谢物和AcrB-AcrZ相互作用在调节该泵功能中的作用。我们将实现这些目标,采用生物信息学和电泳迁移率变动分析,以确定基因直接调节的AcrR,以及荧光偏振结合试验,以确定细胞代谢物流出的AcrAB-TolC,确定小蛋白AcrZ的底物识别的效果,通过这种泵,并确定泵基板结合和调节AcrR功能。最终,该项目将通过识别哪些细胞代谢物既是泵底物又是AcrR配体来揭示泵功能和基因调控之间的功能联系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CRISTIAN RUIZ RUEDA其他文献

CRISTIAN RUIZ RUEDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the Mechanisms of Neurodegeneration in TBCK Encephaloneuronopathy
揭示 TBCK 脑神经病神经变性的机制
  • 批准号:
    10700602
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling a parabrachial circuit for the state-dependent control of rapid breathing
解开臂旁回路以实现快速呼吸的状态依赖控制
  • 批准号:
    10564191
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the molecular pathology of retinal degeneration through single cell genomics
通过单细胞基因组学揭示视网膜变性的分子病理学
  • 批准号:
    10211475
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the Dynamic Role of Purkinje Cell Neurotransmission in Neurodevelopment.
揭示浦肯野细胞神经传递在神经发育中的动态作用。
  • 批准号:
    10191576
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the Dynamic Role of Purkinje Cell Neurotransmission in Neurodevelopment.
揭示浦肯野细胞神经传递在神经发育中的动态作用。
  • 批准号:
    10645079
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the role of osteocytes in metabolic dysfunction associated with obesity
揭示骨细胞在肥胖相关代谢功能障碍中的作用
  • 批准号:
    10618056
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Unraveling the physiological function of developing cerebellar activity for thalamo-cortical circuit formation
揭示小脑活动发育对丘脑皮质回路形成的生理功能
  • 批准号:
    21K20705
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
  • 批准号:
    10369696
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了