Modern Approaches for the Analysis of Social Media Data

社交媒体数据分析的现代方法

基本信息

  • 批准号:
    2020179
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This research project will develop statistical methods for the analysis of high-resolution data arising from social media applications. Technological growth has made possible the accumulation of data from social media platforms at unprecedented speed and volume. However, current methods for analyzing these data either lack interpretability, are computationally intense, or require a rigid data regimen. This project will use a flexible modeling framework to extract relevant information on a user's behavior. Although the project primarily will focus on Twitter data, the methods to be developed will be applicable to other social media data, such as Facebook, Instagram, Reddit, or TikTok, or any form of digital interaction. The results of this research will help managers, policymakers, and stakeholders better understand the types of actors they are interacting with on social media. The methods and code created by this project will be made publicly available. The investigators will mentor undergraduate and graduate students and interact with K12 students who are interested in using valid statistical approaches to solve problems arising in online social media.This research project will develop statistical methods for binary and categorical functional data structures. The standard analysis of functional data relies fundamentally on the assumption that the intrinsic functions are continuous over the compact interval. The complexity of social media data, however, requires different assumptions. A Twitter user's posting pattern can be defined as a time series of some feature of the posting activity. The user's data then can be viewed as a binary-valued or categorical-valued random function defined over a time domain and observed at a fine grid point. The project will develop classification methods for non-continuous functional data, propose computationally efficient estimation algorithms, and study their theoretical properties. The methods to be developed will be extended to adapt to multiple binary-valued or categorical-valued curves per subject, acquired in a longitudinal design, as well as to account for additional covariate information. Regression models with categorical-valued functional covariates and their associated significance tests also will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一研究项目将开发统计方法,用于分析社交媒体应用程序产生的高分辨率数据。科技的发展使社交媒体平台上的数据以前所未有的速度和数量积累成为可能。然而,当前分析这些数据的方法要么缺乏可解释性,要么计算密集,要么需要严格的数据方案。该项目将使用灵活的建模框架来提取关于用户行为的相关信息。尽管该项目将主要关注Twitter数据,但即将开发的方法将适用于其他社交媒体数据,如Facebook、Instagram、Reddit或TikTok,或任何形式的数字互动。这项研究的结果将帮助管理者、政策制定者和利益相关者更好地了解他们在社交媒体上互动的参与者类型。由该项目创建的方法和代码将公开可用。研究人员将指导本科生和研究生,并与对使用有效的统计方法解决在线社交媒体中出现的问题感兴趣的K12学生进行互动。本研究项目将开发二进制和范畴函数数据结构的统计方法。函数数据的标准分析基本上依赖于内在函数在紧致区间上连续的假设。然而,社交媒体数据的复杂性需要不同的假设。Twitter用户的发帖模式可以定义为发帖活动的某些特征的时间序列。然后,用户的数据可以被视为在时间域上定义的二进制或分类值随机函数,并在精细的网格点上观察。该项目将开发非连续函数数据的分类方法,提出计算高效的估计算法,并研究其理论性质。将要开发的方法将被扩展,以适应在纵向设计中获得的每个受试者的多个二元值或分类值曲线,以及考虑额外的协变量信息。这个奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of social media users with generalized functional data analysis
通过广义功能数据分析对社交媒体用户进行分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana-Maria Staicu其他文献

Glacier Terminus Estimation from Landsat Image Intensity Profiles
Higher-order approximations for interval estimation in binomial settings
  • DOI:
    10.1016/j.jspi.2009.03.021
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ana-Maria Staicu
  • 通讯作者:
    Ana-Maria Staicu
The second order ancillary is rotation based
  • DOI:
    10.1016/j.jspi.2009.09.011
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ana-Maria Staicu;Donald A.S. Fraser
  • 通讯作者:
    Donald A.S. Fraser

Ana-Maria Staicu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana-Maria Staicu', 18)}}的其他基金

CAREER: Next Generation Functional Methods for the Analysis of Emerging Repeated Measurements
职业:用于分析新兴重复测量的下一代函数方法
  • 批准号:
    1454942
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Statistical Methods for Spatially Correlated Hierarchical Functional Data
空间相关的分层函数数据的统计方法
  • 批准号:
    1007466
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
  • 批准号:
    2243119
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
  • 批准号:
    23K16840
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10885376
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Feasibility of AI approaches to historic building inspection report analysis
人工智能方法分析历史建筑检查报告的可行性
  • 批准号:
    10078146
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Collaborative R&D
Dignity and choice in end-of-life decisions: a comparative analysis of the patient-centric approaches in English and German law
临终决策中的尊严和选择:英国和德国法律中以患者为中心的方法的比较分析
  • 批准号:
    2882255
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
A novel multimodal ECM analysis platform for tumor characterization combining morphological and spectrochemical tissue imaging approaches.
一种结合形态学和光谱化学组织成像方法的新型多模式 ECM 分析平台,用于肿瘤表征。
  • 批准号:
    10710735
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了