Collaborative Research: Data Driven Discovery of Singlet Fission Materials

合作研究:数据驱动的单线态裂变材料的发现

基本信息

  • 批准号:
    2021803
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-15 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. This project leverages advances in quantum-mechanics-based materials simulations, data science, and artificial intelligence to discover new solar cell materials. A fraction of excess energy of light in the form of high-energy photons absorbed by solar cell materials can be converted to heat rather than to electric current. This results in a loss of energy conversion efficiency. Many crystals are made of atoms that self-arrange in a regular spatially periodic pattern. Crystals can be made where organic molecules can form the fundamental unit instead of atoms. These molecular crystals may undergo a process known as singlet fission, which enables the conversion of that excess light energy into current carrying charges rather than heat. Singlet-fission-based solar cells are not yet a commercial technology due to dearth of suitable materials that exhibit this process. Over a million molecular crystal structures are known, but it is unknown for which ones singlet fission can occur. Experiments and even advanced quantum mechanical simulations are too costly and time consuming to test many known or predicted new molecular crystals. To overcome this barrier, the interdisciplinary team of experts in computational materials science and statistics will harness methods of data science and artificial intelligence. The team will investigate the use of machine learning methods to accelerate the process of materials discovery by rapidly identifying potentially promising candidate molecular crystals. The team will generate data from quantum-mechanics-based simulations to construct and iteratively improve machine-learned models. This research is expected to lead to the discovery of new materials that exhibit singlet fission, which would advance solar cell technology and could reduce the cost of solar cells. The research will lead to methodological developments that would enable materials discovery for other applications. This project also supports training in advanced high-performance computing at the exascale, and community building at the intersection of materials science and data science through organizing workshops and conferences. An outreach activity will engage educators and K-12 students to raise awareness of careers and research opportunities in materials engineering and data science. TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. singlet fission is the conversion of one photogenerated singlet exciton into two triplet excitons. There has been much interest in singlet fission because of its potential to significantly increase the efficiency of organic solar cells by harvesting two charge carriers from one photon. However, few materials are presently known to exhibit intermolecular singlet fission with high efficiency, hindering the realization of solid-state singlet-fission-based solar cells. The chemical compound space of possible chromophores is infinitely vast and largely unexplored. To enable computational discovery of materials that exhibit singlet fission, the interdisciplinary team will develop a multi-fidelity screening approach, integrating quantum-mechanics-based simulations at different levels of fidelity with machine learning and database mining. Machine learning algorithms will be used to learn from data generated by simulations and to steer simulations for further data acquisition. The machine learning models will dynamically adapt as more data is acquired. This will be implemented in a fully automated iterative workflow, designed to run on exascale high performance computers. This research will advance the discovery of new intermolecular singlet fission chromophores, which will catalyze the realization of "third generation" solid-state singlet-fission-based organic solar cells. Structure-property correlations revealed by machine learning will advance the fundamental understanding of singlet fission by deriving chemical insights and design rules for chromophores and crystal forms with enhanced singlet-fission efficiency. In addition to singlet-fission chromophores, materials may be discovered with desirable properties for other organic electronic device applications. In addition, this project will lead to new methodology needed to tackle the data-science challenges posed by searching for singlet fission materials. This project will lead to statistical developments in optimal sampling strategies for high-dimensional problems involving many data sources and in adaptive models that dynamically evolve as more data is acquired. The developed approach may be extended to other problems, where properties of interest arise from complex phenomena, for which data acquisition is costly or time consuming, and predictive descriptors are unknown. This project also supports training in advanced high-performance computing at the exascale, and community building at the intersection of materials science and data science through organizing workshops and conferences. An outreach activity will engage educators and K-12 students to raise awareness of careers and research opportunities in materials engineering and data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要材料研究部和数学科学部为该奖项提供资金。该项目利用基于量子力学的材料模拟、数据科学和人工智能的进步来发现新的太阳能电池材料。太阳能电池材料吸收的高能光子形式的一部分多余光能可以转化为热量而不是电流。这导致能量转换效率的损失。许多晶体是由以规则的空间周期模式自我排列的原子组成的。可以在有机分子代替原子形成基本单元的情况下制造晶体。这些分子晶体可能会经历一种称为单线态裂变的过程,该过程能够将多余的光能转化为载流电荷而不是热量。由于缺乏表现出这一过程的合适材料,基于单态裂变的太阳能电池尚未成为商业技术。已知超过一百万个分子晶体结构,但尚不清楚哪些分子晶体结构会发生单线态裂变。实验甚至先进的量子力学模拟都过于昂贵且耗时,无法测试许多已知或预测的新分子晶体。为了克服这一障碍,计算材料科学和统计学的跨学科专家团队将利用数据科学和人工智能的方法。该团队将研究使用机器学习方法,通过快速识别潜在有前途的候选分子晶体来加速材料发现的过程。该团队将从基于量子力学的模拟中生成数据,以构建和迭代改进机器学习模型。这项研究预计将导致发现具有单线态裂变的新材料,这将推进太阳能电池技术并降低太阳能电池的成本。 该研究将带来方法论的发展,使材料发现能够用于其他应用。 该项目还通过组织研讨会和会议,支持百亿亿次高级高性能计算的培训,以及材料科学和数据科学交叉领域的社区建设。一项外展活动将吸引教育工作者和 K-12 学生参与,以提高人们对材料工程和数据科学领域的职业和研究机会的认识。技术摘要材料研究部和数学科学部为该奖项提供资金。 单线态裂变是将一个光生单线态激子转换为两个三线态激子。人们对单线态裂变很感兴趣,因为它有可能通过从一个光子收集两个电荷载流子来显着提高有机太阳能电池的效率。然而,目前已知很少有材料能够表现出高效率的分子间单线裂变,这阻碍了固态单线裂变太阳能电池的实现。可能的发色团的化合物空间无限广阔,并且很大程度上尚未被探索。为了实现单线态裂变材料的计算发现,跨学科团队将开发一种多保真度筛选方法,将不同保真度级别的基于量子力学的模拟与机器学习和数据库挖掘相结合。机器学习算法将用于从模拟生成的数据中学习,并引导模拟进行进一步的数据采集。随着获取更多数据,机器学习模型将动态适应。这将在完全自动化的迭代工作流程中实现,设计为在百亿亿级高性能计算机上运行。这项研究将推进新的分子间单线裂变发色团的发现,这将催化“第三代”固态单线裂变有机太阳能电池的实现。机器学习揭示的结构-性质相关性将通过导出化学见解和生色团和晶体形式的设计规则来促进对单线裂变的基本理解,并提高单线裂变效率。除了单线裂变发色团之外,还可能发现具有其他有机电子器件应用所需特性的材料。此外,该项目将带来解决寻找单线态裂变材料带来的数据科学挑战所需的新方法。该项目将导致涉及许多数据源的高维问题的最佳采样策略的统计发展,以及随着更多数据的获取而动态发展的自适应模型的统计发展。所开发的方法可以扩展到其他问题,在这些问题中,感兴趣的属性是由复杂现象产生的,对于这些问题,数据采集成本高昂或耗时,并且预测描述符未知。该项目还通过组织研讨会和会议,支持百亿亿次高级高性能计算的培训,以及材料科学和数据科学交叉领域的社区建设。一项外展活动将吸引教育工作者和 K-12 学生参与,以提高人们对材料工程和数据科学领域的职业和研究机会的认识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking time-dependent density functional theory for singlet excited states of thermally activated delayed fluorescence chromophores
  • DOI:
    10.1103/physrevresearch.4.033147
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Xiaopeng Wang;Siyu Gao;Mingwen Zhao;N. Marom
  • 通讯作者:
    Xiaopeng Wang;Siyu Gao;Mingwen Zhao;N. Marom
Finding predictive models for singlet fission by machine learning
  • DOI:
    10.1038/s41524-022-00758-y
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Xingyu Liu;Xiaopeng Wang;Siyu Gao;Vincent Chang;Rithwik Tom;Maituo Yu;L. Ghiringhelli;N. Marom
  • 通讯作者:
    Xingyu Liu;Xiaopeng Wang;Siyu Gao;Vincent Chang;Rithwik Tom;Maituo Yu;L. Ghiringhelli;N. Marom
Multiple resonance induced thermally activated delayed fluorescence: Effect of chemical modification
多重共振诱导的热激活延迟荧光:化学修饰的影响
  • DOI:
    10.1088/2516-1075/acc70e
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Wang, Xiaopeng;Gao, Siyu;Wang, Aizhu;Wang, Bo;Marom, Noa
  • 通讯作者:
    Marom, Noa
An energetics assessment of benzo[ a ]tetracene and benzo[ a ]pyrene as triplet–triplet annihilation emitters
苯并[a]并四苯和苯并[a]芘作为三重态-三重态湮没发射体的能量学评估
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noa Marom其他文献

Predicting the excited-state properties of crystalline organic semiconductors using GW+BSE and machine learning
使用 GW+BSE 和机器学习预测结晶有机半导体的激发态性质
  • DOI:
    10.1039/d4dd00396a
  • 发表时间:
    2025-03-17
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Siyu Gao;Yiqun Luo;Xingyu Liu;Noa Marom
  • 通讯作者:
    Noa Marom
PAH101: A GW+BSE Dataset of 101 Polycyclic Aromatic Hydrocarbon (PAH) Molecular Crystals
PAH101:一个包含 101 种多环芳烃(PAH)分子晶体的 GW+BSE 数据集
  • DOI:
    10.1038/s41597-025-04959-0
  • 发表时间:
    2025-04-23
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Siyu Gao;Xingyu Liu;Yiqun Luo;Xiaopeng Wang;Kaiji Zhao;Vincent Chang;Bohdan Schatschneider;Noa Marom
  • 通讯作者:
    Noa Marom
Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization
使用贝叶斯优化在 DFT+U 中机器学习哈伯德 U 参数
  • DOI:
    10.1038/s41524-020-00446-9
  • 发表时间:
    2020-11-27
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Maituo Yu;Shuyang Yang;Chunzhi Wu;Noa Marom
  • 通讯作者:
    Noa Marom

Noa Marom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noa Marom', 18)}}的其他基金

Collaborative Research: DMREF: Informed Design of Epitaxial Organic Electronics and Photonics
合作研究:DMREF:外延有机电子和光子学的知情设计
  • 批准号:
    2323749
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Structure Prediction and Design of Molecular Crystals with the GAtor Genetic Algorithm
利用 Gator 遗传算法进行分子晶体的结构预测和设计
  • 批准号:
    2131944
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: MATDAT18 Type-1: Collaborative Research: Data Driven Discovery of Singlet Fission Materials
EAGER:MATDAT18 Type-1:协作研究:数据驱动的单线态裂变材料发现
  • 批准号:
    1844484
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Structure Prediction and Design of Molecular Crystals with the GAtor Genetic Algorithm Package
职业:使用 Gator 遗传算法包进行分子晶体的结构预测和设计
  • 批准号:
    1554428
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了