Probing the Electrochemical Interface with Operando Surface-Enhanced Raman Spectroscopy

使用 Operando 表面增强拉曼光谱探测电化学界面

基本信息

  • 批准号:
    2022652
  • 负责人:
  • 金额:
    $ 49.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Next generation Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life holds enormous potential for electric transportation, renewable energy storage and emerging techniques such as the Internet of Things (IoT). One technical barrier to the continued improvement of battery performance is the insufficient understanding of the electrolyte decomposition and deposition on the electrode surface. This stems from a lack of chemical analysis tools to monitor the molecular interactions at the electrolyte/electrode interface during the reaction. In this project, the investigators will develop a high-performance platform to probe in real-time the evolution of chemical signatures at electrolyte/electrode interface. The new technology will be used to investigate the interface reaction mechanism of promising new electrode materials for safer, lighter and higher capacity Li-ion batteries. It will also benefit other chemical and electrochemical systems where real-time chemical analysis is crucial in elucidating reaction mechanisms and improving performance. Furthermore, the project team will engage the historically underrepresented Inland Empire community in educational and outreach activities aiming at increasing diversity in science and engineering higher education, which accompanies NSF Strategic Plan for 2018-2022 by preparing and engaging a diverse U.S. STEM workforce.The technical goal of this project is to develop a stable and high-performance electrochemical operando surface-enhanced Raman spectroscopy (SERS) technique to study the electrochemical interfaces in next-generation lithium-ion (Li-ion) rechargeable batteries. The proposed technique will address the critical needs for operando spectroscopic tools to understand the interfacial reactions at the electrolyte/electrode interface and the formation mechanism of interfacial species. The PIs will employ a unique design of large-area close-packed films of (electro)chemically-robust Ag@Au epitaxial core-shell nanocubes (NC) as the SERS substrate, that offers for high, homogeneous and stable signal enhancement for operando chemical analysis of electrochemical interfaces. Two major task are planned: (1) synthesize and assemble the Ag@Au epitaxial core-shell nanocubes for large-area high-enhancement SERS substrates, and validate/optimize the operando SERS platform by investigating the carbon/electrolyte interface with known interfacial compounds; and (2) apply the optimized operando SERS platform to study the electrode/electrolyte interfaces of two novel electrode materials including sulfur and silicon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代锂离子电池具有更高的能量密度、更好的安全特性、更低的成本和更长的循环寿命,为电力运输、可再生能源存储和物联网(IoT)等新兴技术带来了巨大的潜力。电池性能持续改进的一个技术障碍是对电解质分解和在电极表面上沉积的理解不足。这源于缺乏化学分析工具来监测反应期间电解质/电极界面处的分子相互作用。在该项目中,研究人员将开发一个高性能平台,以实时探测电解质/电极界面处化学特征的演变。这项新技术将用于研究更安全,更轻和更高容量的锂离子电池的有前途的新电极材料的界面反应机理。它也将有利于其他化学和电化学系统,其中实时化学分析在阐明反应机制和提高性能方面至关重要。此外,项目小组将使历史上代表性不足的内陆帝国社区参与教育和外联活动,旨在增加科学和工程高等教育的多样性,该项目伴随着NSF 2018-2022年战略计划,准备和吸引多元化的美国STEM员工。该项目的技术目标是开发稳定和高性能的电化学操作表面-增强型拉曼光谱(Sers)技术研究下一代锂离子(Li-离子)可充电电池中的电化学界面。所提出的技术将解决的关键需求operando光谱工具,以了解在电解质/电极界面的界面反应和界面物种的形成机制。PI将采用独特设计的大面积紧密堆积的(电)化学稳定的Ag@Au外延核壳纳米立方体(NC)膜作为Sers基底,为电化学界面的操作化学分析提供高,均匀和稳定的信号增强。计划开展两项主要任务:(1)合成并组装用于大面积高增强Sers基底的Ag@Au外延核-壳纳米立方体,并通过研究具有已知界面化合物的碳/电解质界面来验证/优化操作性Sers平台;(2)应用优化的Sers平台对电极进行研究。该奖项反映了NSF的法定使命,并通过评估被认为值得支持使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruoxue Yan其他文献

UNIVERSITY OF CALIFORNIA RIVERSIDE Highly Sensitive SERS Immunosensor via Extrinsic Nano-Stress Sensing A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Chemical and Environmental Engineering by Leonard James Apontti
加州大学河滨分校 通过外在纳米应力传感的高灵敏度 SERS 免疫传感器 Leonard James Apontti 部分满足化学与环境工程理学硕士学位要求的论文
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Wong;L. Apontti;Ruoxue Yan;Sanggon Kim;Yangzhi Zhu;Ning Yu;Xuezhi Ma;Qiu‐Yue Li
  • 通讯作者:
    Qiu‐Yue Li
Analysis of the influence of geothermal fluid fouling behavior on geothermal power generation performance and research on descaling Strategy
地热流体结垢行为对地热发电性能的影响分析及除垢策略研究

Ruoxue Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruoxue Yan', 18)}}的其他基金

CAREER: Development of Novel-scheme Nano-optical Chemical Imaging Spectroscopy
职业:新型纳米光学化学成像光谱学的发展
  • 批准号:
    1654794
  • 财政年份:
    2017
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Continuing Grant
EAGER: Understanding Photochemical 2H-1T Phase Transition in Monolayer MoS2
EAGER:了解单层 MoS2 中的光化学 2H-1T 相变
  • 批准号:
    1649795
  • 财政年份:
    2016
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant

相似海外基金

Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Discovery Early Career Researcher Award
A Highly Multiplexed Electrochemical Interface for Cell-Free, CRISPR-based Sensors
用于基于 CRISPR 的无细胞传感器的高度多重电化学接口
  • 批准号:
    547083-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2022
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive Understanding of Charge Transfer Resistance, Affinity, and Electrochemical Stability of the Li/Oxide-Solid-State Electrolyte Interface
全面了解锂/氧化物-固态电解质界面的电荷转移电阻、亲和力和电化学稳定性
  • 批准号:
    22H02178
  • 财政年份:
    2022
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Highly Multiplexed Electrochemical Interface for Cell-Free, CRISPR-based Sensors
用于基于 CRISPR 的无细胞传感器的高度多重电化学接口
  • 批准号:
    547083-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
First Principles Based Modeling and On-line Real-Time Diagnostics of an Electrochemical Interface
基于第一原理的电化学接口建模和在线实时诊断
  • 批准号:
    RGPIN-2017-06617
  • 财政年份:
    2021
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Discovery Grants Program - Individual
Interface chemistry of electrochemical reaction on the surface of proton conducting solid oxide
质子传导固体氧化物表面电化学反应的界面化学
  • 批准号:
    21K04981
  • 财政年份:
    2021
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2021
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Discovery Grants Program - Individual
Material synthesis with extremely high electric field on an electrochemical interface
电化学界面上具有极高电场的材料合成
  • 批准号:
    21H01038
  • 财政年份:
    2021
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2020
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了