The New Traffic Microscope- Measuring Microscopic Traffic Dynamics to Model and Control Freeway Traffic Congestion

新型交通显微镜 - 测量微观交通动态以建模和控制高速公路交通拥堵

基本信息

  • 批准号:
    2023857
  • 负责人:
  • 金额:
    $ 38.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This NSF grant will produce a deeper understanding of freeway traffic dynamics that will be used develop the next generation of traffic models and ultimately targeted interventions to reduce the negative impacts of traffic congestion. Traffic congestion was estimated to cost the US $179 Billion in 2017. If this research can reduce those costs by only a few percent it will have a high payoff with a broad impact to society. Traffic is inherently difficult to study because one needs fine measurements over a large scale, somewhat akin to being able to read a newspaper in a satellite photo of an entire city. The current state of the art in traffic dynamics and control is based on low resolution data that only provide information about the "average vehicle." Recent results from NSF sponsored research has shown that it is critical to push to higher resolution and understand the individual vehicle interactions to advance both theory and control. This research will (1) essentially develop a "microscope" to see these individual vehicle interactions across large scale empirical data sets, (2) use the newfound dynamics to improve or replace current traffic flow models, and (3) use these traffic flow models to develop targeted interventions that will improve the effectiveness of traffic control.The microscopic details of freeway traffic dynamics are below the resolution of conventional vehicle detectors. This research will use new measurement techniques to empirically study the microscopic nature of how traffic actually flows, with the ultimate goal of building more robust traffic flow models and more effective traffic controls. The new measurement techniques extract microscopic relationships from common loop detectors, thereby using a collection of old sensors in new ways to achieve a level of resolution is unrivaled at this scale. The massive amount of high resolution data allow the research to isolate microscopic traffic dynamics that heretofore were obscured by noise. With the new clarity the microscopic relationships will lead to fundamental discoveries. The research will progress on three levels: (i) Empirically investigate suspected deficiencies of conventional traffic flow models. (ii) For the deficiencies explore the bounds of influence and the structure of the underlying mechanisms to develop a deeper understanding of the dependencies and how they impact traffic dynamics. (iii) Finally, act on the findings by developing traffic flow models to accurately capture the dynamics and explore ways in which these insights can be used to improve traffic control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF的这项拨款将使人们对高速公路交通动态有更深入的了解,这些动态将用于开发下一代交通模型,并最终有针对性地采取干预措施,以减少交通拥堵的负面影响。据估计,2017年交通拥堵造成的损失为1790亿美元。如果这项研究能够将这些成本降低百分之几,它将产生巨大的回报,对社会产生广泛的影响。交通本来就很难研究,因为人们需要在大范围内进行精细测量,这有点类似于能够在整个城市的卫星照片中阅读报纸。交通动力学和控制的当前技术状态是基于仅提供关于“平均车辆”的信息的低分辨率数据。“NSF赞助的研究的最新结果表明,推动更高的分辨率和理解单个车辆的相互作用对于推进理论和控制至关重要。这项研究将(1)基本上开发一个“显微镜”,以查看这些个体车辆在大规模经验数据集上的相互作用,(2)使用新发现的动态来改进或取代当前的交通流模型,以及(3)使用这些交通流模型来制定有针对性的干预措施,以提高交通控制的有效性。高速公路交通动态的微观细节低于传统的分辨率车辆探测器这项研究将使用新的测量技术来实证研究交通实际流动的微观性质,最终目标是建立更强大的交通流模型和更有效的交通控制。新的测量技术从常见的环形探测器中提取微观关系,从而以新的方式使用旧传感器的集合来实现在这种规模下无与伦比的分辨率水平。大量的高分辨率数据使研究能够隔离微观交通动态,迄今为止被噪音所掩盖。有了新的清晰度,微观关系将导致根本性的发现。研究将在三个层次上进行:(i)实证研究传统交通流模型的可疑缺陷。(ii)对于不足之处,探索影响的范围和基础机制的结构,以更深入地了解依赖关系以及它们如何影响流量动态。(iii)最后,通过开发交通流模型来准确捕捉动态,并探索如何将这些见解用于改善交通控制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Method for Validating and Generating Vehicle Trajectories From Stationary Video Cameras
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Coifman其他文献

Microscopic Discontinuities Disrupting Hydrodynamic and Continuum Traffic Flow Models
微观不连续性破坏流体动力学和连续体交通流模型

Benjamin Coifman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Coifman', 18)}}的其他基金

Changing Lanes - Using Advance Sensor Technology to Understand Driver Behavior
变道 - 使用先进的传感器技术了解驾驶员行为
  • 批准号:
    1537423
  • 财政年份:
    2015
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
CAREER: Traffic congestion on freeways: using probe vehicle data to understand bottlenecks and mitigate the resulting problems
职业:高速公路交通拥堵:使用探测车辆数据了解瓶颈并缓解由此产生的问题
  • 批准号:
    0133278
  • 财政年份:
    2002
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
NSF/USDOT Partnership for Exploratory Research - ICSST: Decentralized Surveillance, Control and Data Transmission for Transportation Applications
NSF/USDOT 探索性研究合作伙伴关系 - ICSST:交通应用的分散式监视、控制和数据传输
  • 批准号:
    0127944
  • 财政年份:
    2001
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant

相似海外基金

NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
A real-time traffic signal system for safe and efficient intersections
实时交通信号系统,确保安全高效的十字路口
  • 批准号:
    LP220100226
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Linkage Projects
RAPID: Developing an Interactive Dashboard for Collecting and Curating Traffic Data after the March 26, 2024 Francis Scott Key Bridge Collapse
RAPID:开发交互式仪表板,用于收集和管理 2024 年 3 月 26 日 Francis Scott Key 大桥倒塌后的交通数据
  • 批准号:
    2426947
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Road traffic speed and volume profiles of collision hotspots in the City of Toronto
多伦多市碰撞热点的道路交通速度和流量概况
  • 批准号:
    489155
  • 财政年份:
    2023
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Operating Grants
Determining the specificity of vesicle traffic at the Golgi apparatus
确定高尔基体囊泡运输的特异性
  • 批准号:
    BB/X006859/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Research Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319486
  • 财政年份:
    2023
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
  • 批准号:
    2322210
  • 财政年份:
    2023
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了