ASCENT: BioNet: A distributed network of bioelectronic devices for closed-loop control of physiological processes
ASCENT:BioNet:用于生理过程闭环控制的生物电子设备分布式网络
基本信息
- 批准号:2023849
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bioelectronics promises to dramatically improve human health and performance by sensing and affecting local tissue and organ function in a personalized and highly controlled manner which is not possible with traditional materials and medications. Furthermore, the way that biological systems of the body communicate requires sensing and/or stimulation at physically separated locations, necessitating a “distributed” network of bioelectronic components. To achieve this vision key barriers must be overcome, including unreliable wireless communication with implanted devices through tissue, rejection of engineered devices by the body, and integration. This project will realize a distributed bioelectronic network, or “BioNet”, of miniature, free-standing devices to overcome these challenges, and will demonstrate its utility for repairing nerve injuries. BioNet will develop new electrically conducting biomaterials, and miniaturized tools for powering and transmitting data wirelessly. This project will contribute to societal needs through improved quality of life and well-being and will result in reduced pain, faster functional recovery from peripheral nerve injury, and reduced loss in productivity due to injury. Beyond tissue regeneration and functional restoration, BioNet could contribute more broadly to other areas of medicine, for example, the long-term treatment and therapy of neurological disorders. This proposal will develop a biohybrid bioelectronic distributed network bridging scales (materials, devices, circuits, and systems) and disciplines. The BioNet, with millimeter-scale magneto-electric motes (MagMotes), will seamlessly integrate into regenerating tissues to provide functional biomarkers and therapeutic stimuli in order to affect physiological states. This project thus creates new knowledge and technology towards the bioelectronic system by bringing together diverse disciplines in a convergence research framework. A co-design strategy enables rational for material iteration/discovery, balances physical and practical limitations with hardware/software limitations and reconciles design constraints with application/end user needs. The project will advance materials and methods for tissue-integrated conducting polymer allograft composites. It will deliver a novel approach towards wireless power and low-power data transfer using magnetoelectrics and custom CMOS circuits. These ultra-low-power CMOS circuits and systems will enhance robustness and stability, reduce calibration efforts, and improve fabrication yield. The co-designed BioNet will result in a peripheral nerve injury bioelectronic system capable of biohybrid stimulation and real time diagnostics of nerve regeneration progress, needed in order to form the basis of a closed loop system. The broader impacts for the scientific and engineering community are the establishment of a platform that can be used as a tool to study biological mechanisms underlying disease and dysfunction. By developing the hardware platform for distributed sensors and actuators the project will create a new paradigm for physiological control which will open new opportunities to develop and test concepts for distributed control theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物电子学有望通过以个性化和高度受控的方式感测和影响局部组织和器官功能来显着改善人类健康和性能,这是传统材料和药物无法实现的。此外,身体的生物系统通信的方式需要在物理上分离的位置处进行感测和/或刺激,从而需要生物电子组件的“分布式”网络。为了实现这一愿景,必须克服关键障碍,包括通过组织与植入设备进行不可靠的无线通信,身体对工程设备的排斥以及整合。该项目将实现一个分布式生物电子网络,或“BioNet”,微型,独立的设备,以克服这些挑战,并将展示其修复神经损伤的实用性。BioNet将开发新的导电生物材料,以及用于无线供电和传输数据的小型化工具。该项目将通过改善生活质量和福祉来满足社会需求,并将减少疼痛,加快外周神经损伤的功能恢复,减少因损伤而导致的生产力损失。除了组织再生和功能恢复之外,BioNet还可以为其他医学领域做出更广泛的贡献,例如神经系统疾病的长期治疗和治疗。该提案将开发一个生物混合生物电子分布式网络桥接规模(材料,设备,电路和系统)和学科。带有毫米级磁电微粒(MagMotes)的BioNet将无缝集成到再生组织中,以提供功能性生物标志物和治疗刺激,从而影响生理状态。因此,该项目通过将不同学科汇集在一个融合研究框架中,为生物电子系统创造了新的知识和技术。协同设计策略使材料迭代/发现合理,平衡物理和实际限制与硬件/软件限制,并调和设计约束与应用程序/最终用户需求。 该项目将推进组织集成导电聚合物同种异体复合材料的材料和方法。它将提供一种使用磁电和定制CMOS电路实现无线供电和低功耗数据传输的新方法。 这些超低功耗CMOS电路和系统将增强鲁棒性和稳定性,减少校准工作,并提高制造产量。共同设计的BioNet将产生一个能够进行生物混合刺激和神经再生进展的真实的实时诊断的外周神经损伤生物电子系统,这是形成闭环系统所需的基础。对科学和工程界的更广泛影响是建立了一个平台,可用作研究疾病和功能障碍的生物机制的工具。通过开发分布式传感器和执行器的硬件平台,该项目将为生理控制创造一个新的范例,这将为分布式控制理论的开发和测试提供新的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoelectric backscatter communication for millimeter-sized wireless biomedical implants
- DOI:10.1145/3495243.3560541
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Zhanghao Yu;Fatima T. Alrashdan;Wei Wang;M. Parker;Xinyu Chen;Frank Y. Chen;Joshua Woods;Zhiyu Chen;Jacob T. Robinson;Kaiyuan Yang
- 通讯作者:Zhanghao Yu;Fatima T. Alrashdan;Wei Wang;M. Parker;Xinyu Chen;Frank Y. Chen;Joshua Woods;Zhiyu Chen;Jacob T. Robinson;Kaiyuan Yang
Versatile Poly(3,4-ethylenedioxythiophene) Polyelectrolytes for Bioelectronics by Incorporation of an Activated Ester
- DOI:10.1021/acs.chemmater.2c02315
- 发表时间:2022-12
- 期刊:
- 影响因子:8.6
- 作者:J. Tropp;A. Mehta;Xudong Ji;Abhijith Surendran;Ruiheng Wu;Emily A. Schafer;M. M. Reddy-M.;S. P. Patel-S.
- 通讯作者:J. Tropp;A. Mehta;Xudong Ji;Abhijith Surendran;Ruiheng Wu;Emily A. Schafer;M. M. Reddy-M.;S. P. Patel-S.
A Wireless Network of 8.8-mm 3 Bio-Implants Featuring Adaptive Magnetoelectric Power and Multi-Access Bidirectional Telemetry
具有自适应磁电功率和多路访问双向遥测功能的 8.8 毫米 3 生物植入物无线网络
- DOI:10.1109/rfic54546.2022.9863077
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yu, Zhanghao;Wang, Wei;Chen, Joshua C.;Chen, Zhiyu;He, Yan;Singer, Amanda;Robinson, Jacob T.;Yang, Kaiyuan
- 通讯作者:Yang, Kaiyuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Rivnay其他文献
Cell-free biodegradable electroactive scaffold for urinary bladder tissue regeneration
用于膀胱组织再生的无细胞可生物降解电活性支架
- DOI:
10.1038/s41467-024-55401-9 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:15.700
- 作者:
Rebecca L. Keate;Matthew I. Bury;Maria Mendez-Santos;Andres Gerena;Madeleine Goedegebuure;Jonathan Rivnay;Arun K. Sharma;Guillermo A. Ameer - 通讯作者:
Guillermo A. Ameer
Measuring Evoked Action Potential on Moving Muscle of Optogenetics Rat Using Organic Electro Chemical Transistors
利用有机电化学晶体管测量光遗传学大鼠运动肌肉诱发动作电位
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Wonryung Lee;Dongmin Kim;Jonathan Rivnay;Naoji Matsuhisa;Thomas Lonjaret;Tomoyuki Yokota;Hiromu Yawo;Masaki Sekino;George G. Malliaras;and Takao Someya - 通讯作者:
and Takao Someya
Efficiency through dilution
通过稀释提高效率
- DOI:
10.1038/nmat4632 - 发表时间:
2016-04-25 - 期刊:
- 影响因子:38.500
- 作者:
Jonathan Rivnay - 通讯作者:
Jonathan Rivnay
Engineering hydrophilic conducting composites with enhanced ion mobility.
工程亲水导电复合材料具有增强的离子迁移率。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Eleni Stavrinidou;Orawan Winther;Bijan S Shekibi;Vanessa Armel;Jonathan Rivnay;Esma Ismailova;S. Sanaur;G. Malliaras;Bjorn Winther - 通讯作者:
Bjorn Winther
Organic mixed ionic–electronic conductors
有机混合离子-电子导体
- DOI:
10.1038/s41563-019-0435-z - 发表时间:
2019-08-19 - 期刊:
- 影响因子:38.500
- 作者:
Bryan D. Paulsen;Klas Tybrandt;Eleni Stavrinidou;Jonathan Rivnay - 通讯作者:
Jonathan Rivnay
Jonathan Rivnay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Rivnay', 18)}}的其他基金
CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors
职业:了解聚合物混合导体中结构对离子/电子性质的作用
- 批准号:
1751308 - 财政年份:2018
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
相似海外基金
BioNet: Novel approach to enable comprehensive environmental monitoring for English Fruit Growers
BioNet:为英国果农提供全面环境监测的新方法
- 批准号:
10052894 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Collaborative R&D
BioNet 2024, a scientific research conference to bridge the gap between bioinformatics and omics researchers across the diverse fields of health research present in Alberta and Western Canada.
BioNet 2024 是一场科学研究会议,旨在弥合艾伯塔省和加拿大西部不同健康研究领域的生物信息学和组学研究人员之间的差距。
- 批准号:
480870 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Miscellaneous Programs
BIONET, NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET,国家分子生物学计算机资源
- 批准号:
3560654 - 财政年份:1986
- 资助金额:
$ 130万 - 项目类别:
Telecommunications Support for the BIONET National Computer Resource for Molecular Biology
BIONET 国家分子生物学计算机资源的电信支持
- 批准号:
8516475 - 财政年份:1986
- 资助金额:
$ 130万 - 项目类别:
Interagency Agreement
BIONET, NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET,国家分子生物学计算机资源
- 批准号:
3560652 - 财政年份:1984
- 资助金额:
$ 130万 - 项目类别:
BIONET, NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET,国家分子生物学计算机资源
- 批准号:
3560651 - 财政年份:1984
- 资助金额:
$ 130万 - 项目类别:
BIONET, NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET,国家分子生物学计算机资源
- 批准号:
3560653 - 财政年份:1984
- 资助金额:
$ 130万 - 项目类别:
BIONET, NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET,国家分子生物学计算机资源
- 批准号:
3560650 - 财政年份:1984
- 资助金额:
$ 130万 - 项目类别:
BIONET--NATIONAL COMPUTER RESOURCE FOR MOLECULAR BIOLOGY
BIONET--国家分子生物学计算机资源
- 批准号:
3560649 - 财政年份:1984
- 资助金额:
$ 130万 - 项目类别: