Collaborative Research: NRI: FND: Learning Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:学习多对象操作的图神经网络
基本信息
- 批准号:2024778
- 负责人:
- 金额:$ 34.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For robots to act as ubiquitous assistants in daily life, they must regularly contend with environments involving many objects and objects built of many constituent parts. Current robotics research focuses on providing solutions to isolated manipulation tasks, developing specialized representations that do not readily work across tasks. This project seeks to enable robots to learn to represent and understand the world from multiple sensors, across many manipulation tasks. Specifically, the project will examine tasks in heavily cluttered environments that require multiple distinct picking and placing actions. This project will develop autonomous manipulation methods suitable for use in robotic assistants. Assistive robots stand to make a substantial impact in increasing the quality of life of older adults and persons with certain degenerative diseases. These methods also apply to manipulation in natural or man-made disasters areas, where explicit object models are not available. The tools developed in this project can also improve robot perception, grasping, and multi-step manipulation skills for manufacturing.With their ability to learn powerful representations from raw perceptual data, deep neural networks provide the most promising framework to approach key perceptual and reasoning challenges underlying autonomous robot manipulation. Despite their success, existing approaches scale poorly to the diverse set of scenarios autonomous robots will handle in natural environments. These current limitations of neural networks arise from being trained on isolated tasks, use of different architectures for different problems, and inability to scale to complex scenes containing a varying or large number of objects. This project hypothesizes that graph neural networks provide a powerful framework that can encode multiple sensor streams over time to provide robots with rich and scalable representations for multi-object and multi-task perception and manipulation. This project examines a number of extensions to graph neural networks in order to address current limitations for their use in autonomous manipulation. Furthermore this project examines novel ways of leveraging learned graph neural networks for manipulation planning and control in clutter and for multi-step, multi-object manipulation tasks. In order to train these large-scale graph net representations this project will use extremely large scale, physically accurate, photo-realistic simulation. All perceptual and behavior generation techniques developed in this project will be experimentally validated on a set of challenging real-world manipulation tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了使机器人在日常生活中充当无处不在的助手,他们必须定期包含涉及许多组成部分的许多物体和物体的环境。当前的机器人研究重点是为孤立的操纵任务提供解决方案,开发了不容易跨任务工作的专门表示。该项目旨在使机器人能够在许多操纵任务中学会从多个传感器中代表和理解世界。具体而言,该项目将检查在杂乱无章的环境中的任务,这些任务需要多个不同的选择和放置操作。该项目将开发适用于机器人助手的自主操纵方法。辅助机器人将对增加老年人和某些退化性疾病的人的生活质量产生次要影响。这些方法还适用于在没有明确对象模型的自然或人为灾难区域的操纵。该项目中开发的工具还可以改善机器人的感知,掌握和多步制造技巧,以便从原始的感知数据中学习强大的表示能力,深层神经网络为您提供了最有前途的框架,以实现关键的感知和推理挑战,并构成了自治机器人操纵的基础。尽管它们成功了,但现有方法的扩展很差,而不是对神经元网络的当前局限性的自主机器人组合,这是由于接受隔离任务的培训,使用不同的架构来解决不同的问题,并且无法扩展到包含各种物体或大量对象的复杂风景。该项目假设图形神经元网络提供了一个强大的框架,可以随着时间的推移编码多个传感器流,以为机器人提供丰富而可扩展的表示,以用于多任务和多任务感知和操作。该项目检查了图形中性网络的许多扩展,以解决其在自动操作中使用的当前限制。此外,该项目还研究了利用学习的图形中性网络的新颖方式,以在混乱中进行操纵计划和控制,并进行多步,多对象的操纵任务。为了训练这些大规模的图表净表示,该项目将使用非常大规模的,物理上精确的照片现实模拟。该项目中开发的所有知觉和行为产生技术将在一组挑战者现实世界中的操纵任务上进行实验验证。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和更广泛的影响来评估标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Learning Context-Dependent Tasks from Demonstration for Tendon-Driven Surgical Robots
从肌腱驱动手术机器人的演示中学习上下文相关的任务
- DOI:10.1109/ismr48346.2021.9661534
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Huang, Yixuan;Bentley, Michael;Hermans, Tucker;Kuntz, Alan
- 通讯作者:Kuntz, Alan
Latent Space Planning for Unobserved Objects with Environment-Aware Relational Classifiers
使用环境感知关系分类器对未观察到的对象进行潜在空间规划
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Huang, Yixuan;Yuan, Jialin;Liu, Weiyu;Kim, Chanho;Fuxin, Li;Hermans, Tucker
- 通讯作者:Hermans, Tucker
Learning Visual Shape Control of Novel 3D Deformable Objects from Partial-View Point Clouds
- DOI:10.1109/icra46639.2022.9812215
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Bao Thach;Brian Y. Cho;A. Kuntz;Tucker Hermans
- 通讯作者:Bao Thach;Brian Y. Cho;A. Kuntz;Tucker Hermans
Planning for Multi-Object Manipulation with Graph Neural Network Relational Classifiers
- DOI:10.1109/icra48891.2023.10161204
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Yixuan Huang;Adam Conkey;Tucker Hermans
- 通讯作者:Yixuan Huang;Adam Conkey;Tucker Hermans
DeformerNet: A Deep Learning Approach to 3D Deformable Object Manipulation
DeformerNet:3D 可变形对象操纵的深度学习方法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Thach, Bao;Kuntz, Alan;Hermans, Tucker
- 通讯作者:Hermans, Tucker
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tucker Hermans其他文献
Parallelised Diffeomorphic Sampling-based Motion Planning
基于并行微分同胚采样的运动规划
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tin Lai;Weiming Zhi;Tucker Hermans;Fabio Ramos - 通讯作者:
Fabio Ramos
Representing and learning affordance-based behaviors
- DOI:
- 发表时间:
2014-03 - 期刊:
- 影响因子:0
- 作者:
Tucker Hermans - 通讯作者:
Tucker Hermans
Assembly Planning Using a Two-Arm System for Polygonal Furniture
使用两臂系统进行多边形家具的装配规划
- DOI:
10.1115/dscc2019-9173 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. T. Payne;C. Garrison;Steve Markham;Tucker Hermans;K. Leang - 通讯作者:
K. Leang
A model predictive approach for online mobile manipulation of non-holonomic objects using learned dynamics
使用学习动力学在线移动操作非完整对象的模型预测方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Roya Sabbagh Novin;A. Yazdani;A. Merryweather;Tucker Hermans - 通讯作者:
Tucker Hermans
Planning Sensing Sequences for Subsurface 3D Tumor Mapping
规划地下 3D 肿瘤映射的传感序列
- DOI:
10.1109/ismr48346.2021.9661488 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Brian Y. Cho;Tucker Hermans;A. Kuntz - 通讯作者:
A. Kuntz
Tucker Hermans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tucker Hermans', 18)}}的其他基金
Collaborative Research: CISE: Large: Executing Natural Instructions in Realistic Uncertain Worlds
合作研究:CISE:大型:在现实的不确定世界中执行自然指令
- 批准号:
2321852 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CAREER: Improving Multi-Fingered Manipulation by Unifying Learning and Planning
职业:通过统一学习和规划来提高多指操作能力
- 批准号:
1846341 - 财政年份:2019
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CRII: RI: Enabling Manipulation of Object Collections via Self-Supervised Robot Learning
CRII:RI:通过自监督机器人学习实现对象集合的操作
- 批准号:
1657596 - 财政年份:2017
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
- 批准号:
2410255 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132936 - 财政年份:2022
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant