Scalable, recursively configurable, massively-parallel FEM-multigrid solvers for heterogeneous hardware architectures -- Design, analysis and realisation in FEAST with applications in fluid mechanics
适用于异构硬件架构的可扩展、可递归配置、大规模并行 FEM 多重网格求解器 - FEAST 中的设计、分析和实现以及流体力学应用
基本信息
- 批准号:243173035
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This joint project examines numerical methods for massively-parallel multigrid methods for finite element discretisations of variable order. Special emphasis is placed on techniques that enable robustness and uniform scalability on modern heterogeneous hardware architectures, in particular on hybrid systems comprising conventional CPU-like processors combined with throughput-optimised accelerator designs like graphics processors (GPUs). The goal of uniform scalability is very challenging and embraces aspects of numerical scalability (convergence rates independent of problem size and problem partitioning), the minimisation or even avoidance of sequential components on all parallelism layers of hybrid systems, the equal degree of utilisation of all compute resources, and the numerically stable and robust asynchronous and fault-tolerant parallel execution. In addition, novel numerical methods along with suitable implementation techniques are developed and analysed (hardware-oriented numerics), so that efficient -- simultaneously wrt. numerics, parallelism and hardware -- discretisation and solution techniques can be provided for a broad range of flow problems. Joint work in this research project is incorporated both in independently usable libraries as well as the common FEAST software package that has been developed intinsively during the last years, so that a numerically robust, scalable and recursively configurable methodology for massively-parallel multigrid methods on heterogeneous hardware platforms can be realised and analysed.
该联合项目研究变阶数有限元离散的大规模并行多重网格法的数值方法。特别强调了在现代异类硬件体系结构上实现健壮性和统一可扩展性的技术,特别是在混合系统上,该混合系统包括传统的类似CPU的处理器与诸如图形处理器(GPU)等吞吐量优化的加速器设计相结合。统一可伸缩性的目标非常具有挑战性,包括数值可伸缩性(与问题大小和问题划分无关的收敛速度)、最小化甚至避免混合系统的所有并行层上的顺序组件、所有计算资源的同等利用程度,以及数值稳定且健壮的异步和容错并行执行。此外,还开发和分析了新的数值方法和适当的实现技术(面向硬件的数值),以便有效地同时进行WRT。数值、并行和硬件--离散化和求解技术可用于广泛的流动问题。这一研究项目中的联合工作被纳入独立可用的库以及在过去几年中专门开发的公共FEAST软件包中,以便能够实现和分析在不同硬件平台上的大规模并行多重网格方法的数值健壮、可伸缩和递归可配置的方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft fault detection and correction for multigrid
- DOI:10.1177/1094342016684006
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Mirco Altenbernd;Dominik Göddeke
- 通讯作者:Mirco Altenbernd;Dominik Göddeke
Orientation preserving mesh optimisation and preconditioning
- DOI:10.1002/nme.5764
- 发表时间:2018-05
- 期刊:
- 影响因子:2.9
- 作者:J. Paul
- 通讯作者:J. Paul
Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing
具有分层压缩异步检查点的容错有限元多重网格算法
- DOI:10.1016/j.parco.2015.07.003
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Göddeke;Altenbernd;Ribbrock
- 通讯作者:Ribbrock
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Dominik Göddeke其他文献
Professor Dr. Dominik Göddeke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Dominik Göddeke', 18)}}的其他基金
Doing tomography differently: building the imaging tools of tomorrow
以不同的方式进行断层扫描:构建未来的成像工具
- 批准号:
391901487 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
A data-driven optimization framework for improving the adaptation of the neuromuscular system in brain pathology
用于改善脑病理学中神经肌肉系统适应性的数据驱动优化框架
- 批准号:
465243391 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Self-similarity: recursively definable objects in topology, analysis, category theory and algebra
自相似性:拓扑、分析、范畴论和代数中递归可定义的对象
- 批准号:
EP/D073537/1 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Fellowship
Estimation and hypothesis testing for discrete distributions defined recursively
递归定义的离散分布的估计和假设检验
- 批准号:
121910-1996 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Estimation and hypothesis testing for discrete distributions defined recursively
递归定义的离散分布的估计和假设检验
- 批准号:
121910-1996 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Estimation and hypothesis testing for discrete distributions defined recursively
递归定义的离散分布的估计和假设检验
- 批准号:
121910-1996 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Estimation and hypothesis testing for discrete distributions defined recursively
递归定义的离散分布的估计和假设检验
- 批准号:
121910-1996 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Recursively Enumerable Degrees and Priority Arguments
数学科学:递归可枚举度和优先级参数
- 批准号:
9200539 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: The Distributional Behavior of Recursively Defined Random Variables with Values in Rd, Banach Spaces, or the Compact Subjects of a Banach Space
数学科学:以 Rd、Banach 空间或 Banach 空间的紧主语为值的递归定义随机变量的分布行为
- 批准号:
8502361 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant