Collaborative Research: EarthCube Data Capabilities: Enabling analysis of heterogeneous, multi-source cryospheric data
协作研究:EarthCube 数据功能:实现异构、多源冰冻圈数据分析
基本信息
- 批准号:2026865
- 负责人:
- 金额:$ 25.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea ice is an important component of the climate system and an indicator of climate change. Sea ice data products are used in a variety of geosciences including physical and biological oceanography, climatology and meteorology. As a result of the combined effect of currents, winds, temperature fluctuations, and local and global climate patterns, sea ice is spatiotemporally dynamic, exhibiting a variety of evolving ice types that need classification for scientific analysis as well as operational planning for marine activities in the Arctic and Antarctic. The mapping and classification of sea ice, however, remains a scientific challenge, especially at high spatial and temporal resolutions. This project will build tools to make these data more readily accessible and lower barriers to the usage of federally funded data, especially by underrepresented researchers with less access to strong computational and/or educational resources. To ensure wide adoption, the project team will also develop related interactive tutorials and lab modules designed for students with little to no background in data science methods applicable to geoscience. In recent years, there has been a dramatic increase in the volume and variety of available data, due to both increases in the number of remote sensing instruments collecting data over the Arctic, growth in the number of models and the number of variables output by these models, creating an opportunity for high-resolution spatiotemporal sea ice mapping. The sheer volume and heterogeneity of such data pose a significant challenge to efficient and effective integration and analysis. The work will create modules for combining heterogeneous data products (e.g., satellite-borne passive microwave, SAR imagery from Sentinel-1, IceBridge, ICESat and ICESat-2 and the upcoming NISAR mission) and enable featurization of these heterogeneous data products using machine learning methods such as Restricted Boltzmann Machines and Deep Autoencoders to reduce the data to effectively represent the data while reducing size and dimensionality of the data. The project will build a modularized, semi-automatic, and interactive visual labeling platform utilizing the features generated by deep learning models for scalable labeled dataset creation, and integrate these products into the ecosystem of EarthCube services and user communities, and make the products available to the broader geoscience community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海冰是气候系统的重要组成部分,也是气候变化的指标。海冰数据产品用于各种地球科学,包括物理和生物海洋学、气候学和气象学。由于海流、风、温度波动以及当地和全球气候模式的综合影响,海冰在时空上是动态的,表现出各种演变的冰类型,需要对北极和南极的海洋活动进行分类,以便进行科学分析和业务规划。然而,海冰的测绘和分类仍然是一项科学挑战,特别是在高空间和时间分辨率的情况下。该项目将建立工具,使这些数据更容易获取,并降低联邦资助数据的使用门槛,特别是那些较少获得强大计算和/或教育资源的代表性不足的研究人员。为了确保广泛采用,项目组还将开发相关的互动教程和实验模块,专门为在适用于地球科学的数据科学方法方面几乎没有背景的学生设计。近年来,由于收集北极数据的遥感仪器数量的增加、模型数量的增加以及这些模型输出的变量数量的增加,现有数据的数量和种类急剧增加,为高分辨率时空海冰测绘创造了机会。这些数据的绝对数量和异质性对高效和有效的集成和分析构成了巨大的挑战。这项工作将创建合并各种不同数据产品的模块(例如,星载被动微波、来自哨兵1号、冰桥、ICESat和ICESat-2的合成孔径雷达图像,以及即将进行的NISAR任务),并利用机器学习方法,如受限的Boltzmann机器和深度自动编码器,使这些不同类型的数据产品具有特征,从而减少数据,以便有效地代表数据,同时减少数据的大小和维度。该项目将利用深度学习模型生成的功能构建一个模块化、半自动和交互式的可视标记平台,用于可伸缩的标记数据集创建,并将这些产品集成到EarthCube服务和用户社区的生态系统中,并将产品提供给更广泛的地球科学界。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farnoush Banaei-Kashani其他文献
Users plan optimization for participatory urban texture documentation
- DOI:
10.1007/s10707-012-0166-7 - 发表时间:
2012-08-11 - 期刊:
- 影响因子:2.600
- 作者:
Houtan Shirani-Mehr;Farnoush Banaei-Kashani;Cyrus Shahabi - 通讯作者:
Cyrus Shahabi
Guest editorial: GeoStreaming
- DOI:
10.1007/s10707-017-0291-4 - 发表时间:
2017-01-25 - 期刊:
- 影响因子:2.600
- 作者:
Mohamed Ali;Farnoush Banaei-Kashani;Chengyang Zhang - 通讯作者:
Chengyang Zhang
Farnoush Banaei-Kashani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farnoush Banaei-Kashani', 18)}}的其他基金
Student Travel Grant for 2018 ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
2018 年 ACM SIGSPATIAL 地理信息系统进展国际会议学生旅费资助
- 批准号:
1842984 - 财政年份:2018
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EarthCube Capabilities: Open Polar Radar (OPoRa) Software and Service
合作研究:EarthCube 功能:开放极地雷达 (OPoRa) 软件和服务
- 批准号:
2127606 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2125974 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Open Polar Radar (OPoRa) Software and Service
合作研究:EarthCube 功能:开放极地雷达 (OPoRa) 软件和服务
- 批准号:
2126468 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Repurposing FAIR-Compliant Earth Science Data Repositories
协作研究:EarthCube 功能:重新利用符合 FAIR 的地球科学数据存储库
- 批准号:
2126427 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2126268 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2126435 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Raijin: Community Geoscience Analysis Tools for Unstructured Mesh Data
协作研究:EarthCube 功能:Raijin:非结构化网格数据的社区地球科学分析工具
- 批准号:
2126459 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: ICESpark: An Open-Source Big Data Platform for Science Discoveries in the New Arctic and Beyond
协作研究:EarthCube 功能:ICESpark:新北极及其他地区科学发现的开源大数据平台
- 批准号:
2126474 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Repurposing FAIR-Compliant Earth Science Data Repositories
协作研究:EarthCube 功能:重新利用符合 FAIR 的地球科学数据存储库
- 批准号:
2126298 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: ICESpark: An Open-Source Big Data Platform for Science Discoveries in the New Arctic and Beyond
协作研究:EarthCube 功能:ICESpark:新北极及其他地区科学发现的开源大数据平台
- 批准号:
2126449 - 财政年份:2021
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant














{{item.name}}会员




