ATD: Algorithmic Threat Detection and Mitigation with Robust Machine Learning
ATD:利用强大的机器学习进行算法威胁检测和缓解
基本信息
- 批准号:2027737
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the recent explosion of scientific data, machine learning (ML) is permeating many areas of science and engineering. Even areas that are traditionally dominated by differential equation models are incorporating ML into their models. However, confidence in and broader adoption of ML in science and engineering face a number of challenges, in large part because existing ML models were developed mostly with non-scientific applications in mind. This project seeks to broaden the appeal of ML in scientific applications (hereafter called scientific ML) by addressing three key issues with existing ML models that are hindering their broader adoption in scientific applications.This project will support one graduate student each year of the three year project. First, we consider how to tailor existing ML models to scientific applications by incorporating (scientific) domain knowledge. In most scientific applications, there is a rich body of domain knowledge to draw upon. If we can properly integrate this knowledge with ML models, it allows the machine to focus on learning less well-understood aspects of the underlying theoretical and physical processes. Ultimately, this not only leads to ML models that can outperform human engineered models, but also to new insights into the underlying physical processes. Second, we consider how to train ML models that are stable and reliable under perturbations in the training data, model choice, and computational errors. ML models are known to be unstable under such perturbations, which undermines their credibility in scientific applications. Third, we focus on training ML models that are capable of predicting the effects of interventions on a system. This is an area in which ML models are lacking compared to traditional differential equation models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着最近科学数据的爆炸式增长,机器学习(ML)正在渗透到科学和工程的许多领域。即使是传统上由微分方程模型主导的领域也将ML纳入其模型中。然而,在科学和工程领域对ML的信心和更广泛的采用面临着许多挑战,这在很大程度上是因为现有的ML模型大多是在考虑非科学应用的情况下开发的。该项目旨在通过解决现有ML模型中阻碍其在科学应用中更广泛采用的三个关键问题,扩大ML在科学应用中的吸引力(以下称为科学ML)。该项目将在为期三年的项目中每年支持一名研究生。首先,我们考虑如何通过整合(科学)领域知识来定制现有的ML模型以适应科学应用。在大多数科学应用中,都有丰富的领域知识可供利用。如果我们能够将这些知识与机器学习模型适当地整合,它将允许机器专注于学习底层理论和物理过程中不太了解的方面。最终,这不仅会导致ML模型的性能优于人类工程模型,还会带来对底层物理过程的新见解。其次,我们考虑如何训练ML模型,使其在训练数据、模型选择和计算误差的扰动下稳定可靠。ML模型在这种扰动下是不稳定的,这破坏了它们在科学应用中的可信度。第三,我们专注于训练能够预测干预对系统影响的ML模型。与传统的微分方程模型相比,这是ML模型所缺乏的领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding new tasks through the lens of training data via exponential tilting
- DOI:10.48550/arxiv.2205.13577
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Subha Maity;M. Yurochkin;M. Banerjee;Yuekai Sun
- 通讯作者:Subha Maity;M. Yurochkin;M. Banerjee;Yuekai Sun
Statistical Inference for Individual Fairness
个人公平性的统计推断
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Maity, Subha;Xue, Songkai;Yurochkin, Mikhail;Sun, Yuekai
- 通讯作者:Sun, Yuekai
On sensitivity of meta-learning to support data
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Mayank Agarwal;M. Yurochkin;Yuekai Sun
- 通讯作者:Mayank Agarwal;M. Yurochkin;Yuekai Sun
Outlier-Robust Optimal Transport
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Debarghya Mukherjee;Aritra Guha;J. Solomon;Yuekai Sun;M. Yurochkin
- 通讯作者:Debarghya Mukherjee;Aritra Guha;J. Solomon;Yuekai Sun;M. Yurochkin
Individually Fair Gradient Boosting
单独公平梯度提升
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Vargo, Alexander;Zhang, Fan;Yurochkin, Mikhail;Sun, Yuekai
- 通讯作者:Sun, Yuekai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuekai Sun其他文献
Evaluating the statistical significance of biclusters
评估双簇的统计显着性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Lee;Yuekai Sun;Jonathan E. Taylor - 通讯作者:
Jonathan E. Taylor
Estimating Fréchet bounds for validating programmatic weak supervision
估计 Fréchet 界限以验证程序性弱监督
- DOI:
10.48550/arxiv.2312.04601 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Felipe Maia Polo;M. Yurochkin;Moulinath Banerjee;Subha Maity;Yuekai Sun - 通讯作者:
Yuekai Sun
Friction and adhesion properties of vertically aligned multi- walled carbon nanotube arrays and fluoro-nanodiamond films
垂直排列多壁碳纳米管阵列和氟纳米金刚石膜的摩擦和粘附性能
- DOI:
10.1016/j.carbon.2008.05.010 - 发表时间:
2008 - 期刊:
- 影响因子:10.9
- 作者:
Hao Lu;J. Goldman;F. Ding;Yuekai Sun;M. Pulikkathara;V. Khabashesku;B. Yakobson;J. Lou - 通讯作者:
J. Lou
Debiasing representations by removing unwanted variation due to protected attributes
通过消除由于受保护的属性而导致的不需要的变化来消除表示偏差
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Amanda Bower;Laura Niss;Yuekai Sun;Alexander Vargo - 通讯作者:
Alexander Vargo
Supplementary material for Dirichlet Simplex Nest and Geometric Inference
狄利克雷单纯形嵌套和几何推理的补充材料
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Yurochkin;Aritra Guha;Yuekai Sun;X. Nguyen - 通讯作者:
X. Nguyen
Yuekai Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuekai Sun', 18)}}的其他基金
A Transfer Learning Approach to Algorithmic Fairness
算法公平性的迁移学习方法
- 批准号:
2113373 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Integrative Analysis on Heterogeneous Datasets with High-Dimensional and Non-Standard Models
高维非标准模型异构数据集综合分析
- 批准号:
1916271 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Statistically Principled Real-Time Detection of Anomalies for Temporal Network Data
ATD:协作研究:统计原理的时态网络数据异常实时检测
- 批准号:
1830247 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Australian Experiences of Algorithmic Culture on TikTok
澳大利亚在 TikTok 上的算法文化体验
- 批准号:
DP240102939 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Discovery Projects
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
- 批准号:
2401305 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant