RAPID: Social un-distancing: Understanding self-privacy violations in online communities during the Coronavirus pandemic

RAPID:社交疏远:了解冠状病毒大流行期间在线社区中的自我隐私侵犯行为

基本信息

  • 批准号:
    2027757
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The Covid-19 global crisis is unprecedented in a number of ways, one being the scale and scope of human interaction through social media, as people across the world have resorted to online mediums to connect with others. Early evidence indicates that this expanded breadth and depth of online activity may magnify privacy risks for individual users, offering increased opportunity for privacy violations. However, aside from some notable exceptions such as contact tracing apps, online connectedness has not been studied through the lens of privacy risk. This project will investigate how increased disclosure of personal information during the Coronavirus crisis poses unique risks to users’ wellbeing, leaving them vulnerable to privacy violations and subsequent harms that can further worsen the current global health crisis. Investigators will develop and distribute anonymized, annotated COVID-19 related datasets collected from online social platforms in the USA and Italy for the purposes of understanding unique risks to individual privacy posed by COVID-19 crisis. Framing self-disclosure as a strategic and inherently social behavior, investigators will study observed individual and collective rewards for sharing and explore how individual cost/benefit calculations are mediated during the Coronavirus crisis. Outcomes of this project will provide insights into the unique evolution of privacy attitudes during crisis, specifically, how oversharing of personal information is expedited or even encouraged, leaving users vulnerable to privacy breaches and exploits. Project outcomes will provide novel computational methods to identify utterances of self-privacy violations and, critically, to contextualize this risky behavior. These insights will be critical for effectively managing the health and well-being of individuals and communities during COVID-19 and future pandemics.The project will develop convolutional neural networks for labeling of emotional and informational textual utterances of self-disclosure on conversational datasets related to Covid-19 crisis. Semantic labeling approaches, to better capture the language of personal information sharing will also be included in the analysis, for a better modeling effort. These methods will be used to furnish fine-grained labels of instances of self-disclosure in user-centric conversations collected from online social platform. In parallel, the investigators will develop game-theoretic models of self-disclosure in social context. These strategic models will support formal understanding of privacy risk vs. social reward at the individual and collective scales. Data collection, algorithm development and model refinement will move forward in tandem, enabling the most rapid possible response during the Coronavirus crisis. Parallel to a focus on domestic users and English-language text, the investigators will collect and analyze data from Italian social and mainstream media in order to explore the cultural and infrastructural “signatures” of these phenomena, as well as to understand self-disclosure at differing points in the epidemic lifecycle. The dataset with annotations as well as open source code related to the models will be shared with the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新冠肺炎全球危机在许多方面都是前所未有的,其中之一是通过社交媒体进行人际互动的规模和范围,因为世界各地的人们都利用在线媒体与他人联系。早期的证据表明,在线活动的广度和深度的扩大可能会增加个人用户的隐私风险,为侵犯隐私提供更多的机会。然而,除了一些引人注目的例外,如联系人追踪应用程序,在线连接还没有从隐私风险的角度进行研究。该项目将调查冠状病毒危机期间个人信息披露的增加如何对用户的健康构成独特的风险,使他们容易受到隐私侵犯和随后的伤害,这些伤害可能进一步加剧当前的全球健康危机。调查人员将开发和分发从美国和意大利的在线社交平台收集的匿名、带注释的COVID-19相关数据集,以了解COVID-19危机对个人隐私构成的独特风险。研究人员将自我披露视为一种战略性和固有的社会行为,他们将研究观察到的个人和集体分享的回报,并探索在冠状病毒危机期间如何调节个人成本/收益计算。该项目的成果将深入了解危机期间隐私态度的独特演变,特别是如何加速甚至鼓励个人信息的过度共享,使用户容易受到隐私泄露和利用。项目成果将提供新的计算方法来识别侵犯自我隐私的话语,更重要的是,将这种危险行为置于背景中。这些见解对于在2019冠状病毒病和未来大流行期间有效管理个人和社区的健康和福祉至关重要。该项目将开发卷积神经网络,用于标记与Covid-19危机相关的会话数据集中自我披露的情感和信息文本话语。语义标记方法,以更好地捕获个人信息共享的语言,也将包括在分析中,以更好地建模。这些方法将用于提供从在线社交平台收集的以用户为中心的对话中自我披露实例的细粒度标签。同时,研究者将发展社会情境下自我表露的博弈论模型。这些战略模型将支持在个人和集体尺度上对隐私风险与社会回报的正式理解。数据收集、算法开发和模型改进将同步推进,以便在冠状病毒危机期间做出最迅速的反应。在关注国内用户和英文文本的同时,调查人员将收集和分析意大利社会和主流媒体的数据,以探索这些现象的文化和基础设施“特征”,并了解疫情生命周期不同阶段的自我披露。带有注释的数据集以及与模型相关的开源代码将与研究社区共享。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A study of self-disclosure during the Coronavirus pandemic
冠状病毒大流行期间的自我披露研究
  • DOI:
    10.5210/fm.v26i7.11555
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blose, Taylor;Umar, Prasanna;Squicciarini, Anna;Rajtmajer, Sarah
  • 通讯作者:
    Rajtmajer, Sarah
A. Squicciarini, S. Rajtmajer, P. Umar, T. Blose.
A. Squicciarini、S. Rajtmajer、P. Umar、T. Blose。
Content Sharing Design for Social Welfare in Networked Disclosure Game
网络披露游戏中的社会公益内容共享设计
Self-disclosure on Twitter During the COVID-19 Pandemic: A Network Perspective
  • DOI:
    10.1007/978-3-030-86514-6_17
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prasanna Umar;Chandan Akiti;A. Squicciarini;S. Rajtmajer
  • 通讯作者:
    Prasanna Umar;Chandan Akiti;A. Squicciarini;S. Rajtmajer
The Contribution of Verified Accounts to Self-Disclosure in COVID-Related Twitter Conversations
  • DOI:
    10.1609/icwsm.v16i1.19394
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Du;Prasanna Umar;S. Rajtmajer;A. Squicciarini
  • 通讯作者:
    Tingting Du;Prasanna Umar;S. Rajtmajer;A. Squicciarini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Rajtmajer其他文献

Can Large Language Models Discern Evidence for Scientific Hypotheses? Case Studies in the Social Sciences
大型语言模型可以辨别科学假设的证据吗?
Exploring Trust and Risk during Online Bartering Interactions
探索在线易货互动过程中的信任和风险
  • DOI:
    10.48550/arxiv.2311.15505
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kalyani Lakkanige;Lamar Cooley;Alan R. Wagner;Sarah Rajtmajer
  • 通讯作者:
    Sarah Rajtmajer
Online Self-Disclosure, Social Support, and User Engagement During the COVID-19 Pandemic
COVID-19 大流行期间的在线自我披露、社会支持和用户参与
  • DOI:
    10.1145/3617654
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jooyoung Lee;Sarah Rajtmajer;Eesha Srivatsavaya;Shomir Wilson
  • 通讯作者:
    Shomir Wilson
Reacting to Generative AI: Insights from Student and Faculty Discussions on Reddit
对生成式人工智能的反应:Reddit 上学生和教师讨论的见解
  • DOI:
    10.1145/3614419.3644014
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuhao Wu;Xinyu Wang;John M. Carroll;Sarah Rajtmajer
  • 通讯作者:
    Sarah Rajtmajer
Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter
回音室内部:推特上错误信息的语言基础
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyu Wang;Jiayi Li;Sarah Rajtmajer
  • 通讯作者:
    Sarah Rajtmajer

Sarah Rajtmajer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Rajtmajer', 18)}}的其他基金

SaTC: CORE: Small: Toward Privacy Equity through Contextual Understanding of Self-Disclosure
SaTC:核心:小:通过自我披露的情境理解实现隐私公平
  • 批准号:
    2247723
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

小型类人猿合唱节奏的功能假说——宣 示社会关系(Social bond advertising) ——验证研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目
多语言环境下Social Tagging的内涵机理与应用框架研究-基于比较的视角
  • 批准号:
    71103203
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research: Determinants of social meaning
博士论文研究:社会意义的决定因素
  • 批准号:
    2336572
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Bridging Economic Demands with Social Responsibility: A Deep Dive into SMFDI's Production-Driven CSR Initiatives
连接经济需求与社会责任:深入探讨 SMFDI 的生产驱动型企业社会责任计划
  • 批准号:
    24K20993
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Social Ontology within Japanese Philosophy: The multitude and the masses in the philosophies of Tsuchida Kyouson and Tosaka Jun
日本哲学中的社会本体论:土田恭尊与远坂淳哲学中的诸众与群众
  • 批准号:
    24K15884
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Professional incorporation and social inclusion of highly-skilled Asian migrants in Japan and the UK
日本和英国高技能亚洲移民的专业融入和社会融入
  • 批准号:
    24K16520
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AI-PigNet: The AI of social interactions for next gen smart animal breeding
AI-PigNet:下一代智能动物饲养的社交互动人工智能
  • 批准号:
    BB/Y513891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Neuronal mechanisms for social information processing.
社会信息处理的神经机制。
  • 批准号:
    BB/Z514780/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了