RAPID: Collaborative Research: Operational COVID-19 Forecasting with Multi-Source Information
RAPID:协作研究:利用多源信息进行可操作的 COVID-19 预测
基本信息
- 批准号:2027802
- 负责人:
- 金额:$ 8.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a new deep learning predictive platform for COVID-19 transmission, integrating multi-source information under model and data uncertainties. In contrast to other viruses such as influenza, SARS, and MERS, COVID-19 differs in a number of ways, including uncertainties in response to weather conditions, history of the disease, as well as the effectiveness of responses from public health officials or from the general public. An important aspect is to integrate multi-source data such as official reports, atmospheric variables, and social media data into operational biosurveillance and real-time prediction of COVID-19. The proposed biosurveillance framework will be used to forecast COVID-19 dynamics and to enhance mitigation strategies. In addition, it could also be applicable to tracking many other infectious diseases, thereby contributing to security of our society as a whole. Furthermore, the project will build innovative connections within and across mathematical biology, statistics, and deep learning, with a strong focus on interdisciplinary graduate research training.As the main forecasting framework, the widely used Susceptible-Exposed-Infected-Recovered (SEIR) dynamic models can accurately describe the disease dynamics, but only with precise knowledge of disease parameters, which can take a long time to accurately estimate. Deep learning algorithms can potentially have superior predictive ability, but they require extensive training. Another key challenge in the statistical modeling of these events is how to timely and systematically integrate multiple sources of surveillance, anecdotal, and other health-related information under uncertainty. The proposed new predictive approach is based on the interaction between multiple data sources, dynamical SEIR models, and deep learning algorithms. The key idea is to view simulation SEIR models as “surrogate” pre-trainers for the deep learning models, resulting in less real data needed to retrain the predictive model to reflect “real world” COVID-19 progression. Deep learning predictive models can then be used for making predictions about the future COVID-19 dynamics, which can be compared to the predictions made by the original SEIR model. Depending on which mathematical model makes better predictions, another model can be updated with the better prediction as inputs, thereby representing reinforcement learning from both data and the best mathematical model. As a result, the new predictive framework will allow one to assess impacts of the immediate responses such as declaration of a national emergency, a school closing, or a quarantine, and can be considered as a step toward interpretable AI for COVID-19 biosurveillance.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplemental funds allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在为COVID-19传播开发一个新的深度学习预测平台,整合模型和数据不确定性下的多源信息。与流感、SARS和MERS等其他病毒相比,COVID-19在许多方面有所不同,包括对天气条件、疾病历史以及公共卫生官员或公众应对措施的有效性的不确定性。一个重要方面是将官方报告、大气变量和社交媒体数据等多源数据整合到COVID-19的业务生物监测和实时预测中。拟议的生物监测框架将用于预测COVID-19的动态并加强缓解策略。此外,它还可用于跟踪许多其他传染病,从而为我们整个社会的安全作出贡献。此外,该项目还将在数学生物学、统计学和深度学习之间建立创新的联系,重点关注跨学科的研究生研究培训。作为主要的预测框架,广泛使用的易感-暴露(SEIR)动态模型可以准确描述疾病动态,但需要精确的疾病参数知识,这可能需要很长时间才能准确估计。深度学习算法可能具有上级预测能力,但它们需要大量的训练。对这些事件进行统计建模的另一个关键挑战是如何在不确定性的情况下及时、系统地整合多种来源的监测、轶事和其他健康相关信息。提出的新预测方法基于多个数据源、动态SEIR模型和深度学习算法之间的交互。其关键思想是将模拟SEIR模型视为深度学习模型的“替代”预训练器,从而减少重新训练预测模型以反映“真实的世界”COVID-19进展所需的真实的数据。然后,深度学习预测模型可以用于预测未来的COVID-19动态,可以与原始SEIR模型的预测进行比较。根据哪个数学模型做出更好的预测,可以用更好的预测作为输入来更新另一个模型,从而表示来自数据和最佳数学模型的强化学习。因此,新的预测框架将允许人们评估立即响应的影响,例如宣布国家紧急状态,学校关闭或隔离,并且可以被视为迈向可解释的人工智能的一步COVID-19生物监测。这笔赠款将使用冠状病毒援助,救济,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgiy Bobashev其他文献
Prevalence and correlates of multiple injections per injection episode among people who inject drugs in rural U.S. communities
美国农村社区注射吸毒者每次注射行为中多次注射的流行情况及其相关因素
- DOI:
10.1016/j.drugpo.2025.104837 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.400
- 作者:
L. Sarah Mixson;William Zule;Stephanie A. Ruderman;Judith Feinberg;Thomas J. Stopka;Adams L. Sibley;Suzan M. Walters;Georgiy Bobashev;Ryan Cook;Karli R. Hochstatter;Carolyn A. Fahey;Lawrence J Ouellet;Rob Fredericksen;Hannah L.F. Cooper;April M. Young;Jon Zibbell;Dalia Khoury;Peter D. Friedmann;William C. Miller;P. Todd Korthuis;Joseph Delaney - 通讯作者:
Joseph Delaney
A National Synthetic Populations Dataset for the United States
美国的一个国家合成人口数据集
- DOI:
10.1038/s41597-025-04380-7 - 发表时间:
2025-01-25 - 期刊:
- 影响因子:6.900
- 作者:
James Rineer;Nicholas Kruskamp;Caroline Kery;Kasey Jones;Rainer Hilscher;Georgiy Bobashev - 通讯作者:
Georgiy Bobashev
W49 - Estimating the Impact of Diverted Buprenorphine on Population Opioid Overdose Incidence Using an Agent-Based Model
W49 - 使用基于主体的模型估计 diverted 丁丙诺啡对人群阿片类药物过量发生率的影响
- DOI:
10.1016/j.drugalcdep.2023.110667 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:3.600
- 作者:
Joella Adams;Michael Duprey;Sazid Khan;Jessica Cance;Donald Rice;Georgiy Bobashev - 通讯作者:
Georgiy Bobashev
S76 - A Consistent Decrease of Opioid Misuse Among Young Americans: A Pseudo-Cohort Analysis of Use Patterns From the National Household Survey on Drug Use and Health
S76 - 美国年轻人中阿片类药物滥用的持续减少:基于全国药物使用和健康调查使用模式的伪队列分析
- DOI:
10.1016/j.drugalcdep.2023.110187 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:3.600
- 作者:
Georgiy Bobashev;Lauren Warren;Joella Adams - 通讯作者:
Joella Adams
Simulating the effects of medicaid expansion on the opioid epidemic in North Carolina
- DOI:
10.1016/j.dadr.2024.100262 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Anthony Berghammer;Joella W. Adams;Sazid Khan;Georgiy Bobashev - 通讯作者:
Georgiy Bobashev
Georgiy Bobashev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant