RAPID: Collaborative Research: New Generation of a Bio-inspired Protective Mask Based on Thermal & Vortex Traps

RAPID:合作研究:新一代基于热的仿生防护口罩

基本信息

  • 批准号:
    2028075
  • 负责人:
  • 金额:
    $ 7.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

With the rapid spread of the Coronavirus Disease 2019 (COVID-19) worldwide, highly-protective respirator masks can be crucial to safeguard the uninfected population. While virus transmission occurs via tiny aerosols, current mask coverings rely purely on passive filters; and can benefit from enhanced aerosol-collection and virus-inactivation mechanisms. We propose to engineer a highly-efficient, easy-to-use, cost-effective respirator design that will be significantly more efficient at capturing tiny aerosols. A combination of copper-based filters and an air-transmission passage inspired by nasal structures in animals with an enhanced sense of smell will facilitate droplet capture, followed by virus inactivation via thermal and ionic effects. The final respirator design will directly address the urgent global shortage and immediate national need for more effective masks. By preventing nosocomial transmission, the product can also be a critical game-changer for the healthcare community. For an accelerated concept-to-product transition, we will seek collaborations with virology labs and pharmaceutical companies for detailed testing with live COVID samples.This collaborative project will engineer a novel, highly-efficient, virus-preventive respirator mask inspired by nasal structures in animals with enhanced olfactory sensitivity. Small aerosol droplets that can carry viruses will be captured from inhaled air by using a combination of copper-based filters and a bio-inspired tortuous passage with periodic thermal gradients induced by spiral copper wires. The aerosol capture will be articulated by modulating the dynamics of flow structures in the convoluted geometry (vortex trap) and by thermophoresis action along the respirator’s internal walls (thermal trap). Cyclic cold/hot temperature changes on the walls, along with ionic activity from the copper material, will be used to inactivate the trapped viruses. The use of these mechanisms is supported by published observations on earlier and current strains of coronavirus. The project will integrate the theoretical, experimental, and computational expertise of the principal investigators in optimizing the design for a new-age respirator, which can be radically more effective at preventing the transmission of COVID-19. To meet the urgent public need, the researchers will establish collaborations with pharmaceutical and manufacturing companies as well as university-based Biosafety Level – 3 lab units for non-clinical in vivo testing and to ensure rapid prototype development of the proposed respirator masks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着2019冠状病毒病(COVID-19)在全球的迅速传播,高度防护的呼吸器口罩对于保护未感染人群至关重要。虽然病毒通过微小的气溶胶传播,但目前的口罩覆盖物完全依赖于被动过滤器;并且可以受益于增强的气溶胶收集和病毒灭活机制。我们建议设计一种高效,易于使用,具有成本效益的呼吸器设计,在捕获微小气溶胶方面将更加有效。铜基过滤器和空气传输通道的组合,灵感来自嗅觉增强的动物的鼻腔结构,将有助于液滴捕获,然后通过热和离子效应灭活病毒。最终的口罩设计将直接解决全球紧急短缺和各国对更有效口罩的迫切需求。通过防止院内传播,该产品也可以成为医疗保健界的关键改变者。为了加速概念到产品的过渡,我们将寻求与病毒学实验室和制药公司合作,对新冠病毒活样本进行详细测试。该合作项目将设计一种新型、高效、防病毒的呼吸面罩,其灵感来自嗅觉灵敏度更高的动物鼻腔结构。通过使用铜基过滤器和螺旋铜线诱导的周期性热梯度的生物激励曲折通道的组合,将从吸入的空气中捕获可携带病毒的小气溶胶液滴。气溶胶捕获将通过调节回旋几何形状中的流动结构的动力学(涡旋阱)和通过沿着呼吸器内壁的热泳作用(热阱)来连接。壁上的循环冷/热温度变化,沿着来自铜材料的离子活性,将被用于捕获捕获病毒。这些机制的使用得到了对早期和当前冠状病毒株的已发表观察的支持。该项目将整合主要研究人员的理论,实验和计算专业知识,优化新时代呼吸器的设计,这可以从根本上更有效地防止COVID-19的传播。为了满足公众的迫切需要,研究人员将与制药和制造公司以及大学生物安全三级实验室单位建立合作,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vapor Flux on Bumpy Surfaces: Condensation and Transpiration on Leaves
凹凸不平表面上的蒸汽通量:叶子上的冷凝和蒸腾
  • DOI:
    10.1021/acs.langmuir.1c00473
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jung, Sunghwan
  • 通讯作者:
    Jung, Sunghwan
On the design of particle filters inspired by animal noses
  • DOI:
    10.1098/rsif.2021.0849
  • 发表时间:
    2022-03-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yuk, Jisoo;Chakraborty, Aneek;Jung, Sunghwan
  • 通讯作者:
    Jung, Sunghwan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunny Jung其他文献

Sunny Jung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunny Jung', 18)}}的其他基金

Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Actuating and Sensing Objects on a Free Surface
合作研究:驱动和感测自由表面上的物体
  • 批准号:
    2042740
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
MCA: Effects of unsteady wind and surface morphology on the plant transpiration
MCA:不稳定风和表面形态对植物蒸腾作用的影响
  • 批准号:
    2120739
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating aerial maneuvers in bat flight using experiments, mathematical modeling, and robotic mimicry
合作研究:利用实验、数学建模和机器人模仿研究蝙蝠飞行中的空中机动
  • 批准号:
    2002714
  • 财政年份:
    2020
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: bubble impacting a curved surface: a sustainable way to sanitize produce
合作研究:气泡撞击曲面:农产品消毒的可持续方法
  • 批准号:
    1919753
  • 财政年份:
    2019
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Dynamics of leaves with different wettability due to raindrop impact
雨滴影响下不同润湿性叶片的动力学
  • 批准号:
    1903989
  • 财政年份:
    2018
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Dynamics of leaves with different wettability due to raindrop impact
雨滴影响下不同润湿性叶片的动力学
  • 批准号:
    1604424
  • 财政年份:
    2016
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Characterizing Fluid Properties for Micro/Nano Droplet Using High-Q Whispering Gallery Modes
使用高 Q 回音壁模式表征微/纳米液滴的流体特性
  • 批准号:
    1438112
  • 财政年份:
    2014
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
How Do Animals Harness Water Entry and Exit Dynamics?
动物如何利用水的进出动力学?
  • 批准号:
    1205642
  • 财政年份:
    2013
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Long-term dynamics of Water-entry
合作提案:进水的长期动态
  • 批准号:
    1336038
  • 财政年份:
    2013
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了