Origins of Damping in Biomimetic Scale Exoskeletal Metamaterials and their Influence on Limit Cycles

仿生尺度外骨骼超材料中阻尼的起源及其对极限循环的影响

基本信息

项目摘要

The grant will support research towards the discovery and quantification of new kind of damping in biomimetic scale structures. These structures are synthetic soft substrates with stiff plate like exoskeletal protrusion resembling scales on fishes and reptiles. Damping can critically affect the performance of a range of dynamic systems such as soft autonomous systems and robots, wearable technologies, aerostructures and microsystems. Typically, damping is either undesirable or poorly controlled. However, exoskeletal structures leverage geometry, deformation and sliding to provide unprecedented control over damping response. This can change damping from a nuisance to a design element that tailors operational efficiency and dynamics. This will directly contribute to the development of next generation of aerospace structures, collaborative robots (COBOTS) and smart skins with superior performance. These outcomes will improve operational efficiency, accelerate automation and deepen human-machine integration. This research will broadly benefit US economy, increase technological competitiveness, strengthen national defense, and positively affect society. The comprehensive but fundamental approach in this research will lead to new science, greater cross-pollination of ideas across engineering, broaden participation of underrepresented groups and improve engineering curriculum. The origins of structural damping for the systems considered in this study are from the friction between sliding exoskeletal structures, and are dramatically reshaped in metamaterials due to the intricate interplay of dynamics, deformation and topology. The dynamics of biomimetic scale exoskeletal metamaterials, resembling the form of scales found in nature on fishes and reptiles, is dictated by the complex mutual sliding kinematics of the stiff plate-like scales. However, the emergence of damping due to sliding friction is poorly understood as friction has a dual nature – enhance both dissipation and stiffness. As a direct consequence of sliding complexity, this project hypothesizes the emergence of viscous, directional and nonlinear damping behavior even when simple Coulomb friction exists between scales. Due to the dual effect of friction on both stiffness and damping, its central role in limit cycle creation-annihilation is postulated. The research will reveal the architecture-dissipation-dynamics relationships using a combination of analytical modeling, computational simulations including finite elements and testing and imaging based experimental studies. The interplay of scale sliding kinematics with substrate deformation and boundary conditions give rise to these emergent properties even in small strains with complex oscillations tailorable from the exoskeletal distribution and shape (architecture). By revealing the coupling of these operating factors, a new body of transformative knowledge on the dynamics of exoskeletal structures will be created.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将支持对仿生尺度结构中新型阻尼的发现和量化的研究。这些结构是合成的软基质,具有硬板状外骨骼突起,类似于鱼类和爬行动物的鳞片。阻尼可以严重影响一系列动态系统的性能,例如软自主系统和机器人,可穿戴技术,航空结构和微系统。通常,阻尼是不期望的或控制不良的。然而,外骨骼结构利用几何形状、变形和滑动来提供对阻尼响应的前所未有的控制。这可以将阻尼从一个讨厌的东西变成一个设计元素,从而调整操作效率和动态。这将直接有助于开发下一代航空航天结构、协作机器人(COBOTS)和具有上级性能的智能皮肤。这些成果将提高运营效率,加速自动化并深化人机集成。这项研究将广泛造福美国经济,提高技术竞争力,加强国防,并对社会产生积极影响。这项研究的全面但基本的方法将导致新的科学,更大的跨工程思想的交叉授粉,扩大代表性不足的群体的参与,并改善工程课程。在这项研究中考虑的系统的结构阻尼的起源是从滑动外骨骼结构之间的摩擦,并显着重塑超材料由于复杂的相互作用的动力学,变形和拓扑结构。仿生鳞片外骨骼超材料的动力学,类似于在自然界中发现的鱼类和爬行动物的鳞片的形式,是由复杂的相互滑动运动学的刚性板状鳞片。然而,由于滑动摩擦引起的阻尼的出现知之甚少,因为摩擦具有双重性质-增强耗散和刚度。作为滑动复杂性的直接结果,该项目假设即使在尺度之间存在简单的库仑摩擦时,也会出现粘性、方向性和非线性阻尼行为。由于摩擦对刚度和阻尼的双重影响,它在极限环的产生-湮灭中起着核心作用。该研究将使用分析建模,计算模拟(包括有限元)和基于测试和成像的实验研究的组合来揭示结构-耗散-动力学关系。尺度滑动运动学与基底变形和边界条件的相互作用引起了这些新兴的属性,即使在小应变与复杂的振荡可定制的外骨骼分布和形状(架构)。通过揭示这些操作因素的耦合,将创建一个新的关于外骨骼结构动力学的变革性知识体系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Material-geometry interplay in damping of biomimetic scale beams
  • DOI:
    10.1063/5.0150081
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Hossein Ebrahimi;Milos Krsmanovic;Hessein Ali;Hossein Ebrahimi
  • 通讯作者:
    Hossein Ebrahimi;Milos Krsmanovic;Hessein Ali;Hossein Ebrahimi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranajay Ghosh其他文献

Stresses within rare-earth doped yttria-stabilized zirconia thermal barrier coatings from in-situ synchrotron X-ray diffraction at high temperatures
  • DOI:
    10.1016/j.surfcoat.2022.128647
  • 发表时间:
    2022-08-25
  • 期刊:
  • 影响因子:
  • 作者:
    Quentin Fouliard;Hossein Ebrahimi;Johnathan Hernandez;Khanh Vo;Frank Accornero;Mary McCay;Jun-Sang Park;Jonathan Almer;Ranajay Ghosh;Seetha Raghavan
  • 通讯作者:
    Seetha Raghavan
Compression Behavior and Energy Absorption of Carbon Fiber Reinforced Composite Sandwich Panels Made of Three Dimensional Grid Cores
三维网格芯碳纤维增强复合材料夹芯板的压缩行为和能量吸收
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Ranajay Ghosh;Hong Hu;Li Ma;Linzhi Wu
  • 通讯作者:
    Linzhi Wu

Ranajay Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranajay Ghosh', 18)}}的其他基金

CAREER: The Mechanics of Tunable Exoskeleton Structures: Interactions of Rigid Scales with Deformable Substrates
职业:可调外骨骼结构的力学:刚性鳞片与可变形基底的相互作用
  • 批准号:
    1943886
  • 财政年份:
    2020
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Standard Grant
Fur Anti-Fouling via Physiological Mechanisms
毛皮通过生理机制防污
  • 批准号:
    1825801
  • 财政年份:
    2018
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Dissipation Mechanisms and Damping in Smart Elastomers with Intermolecular Organization
职业:具有分子间组织的智能弹性体的耗散机制和阻尼
  • 批准号:
    2238035
  • 财政年份:
    2023
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Standard Grant
Research on Investigation of Damping Mechanism and Optimal Design of Metal Additively Manufactured Powder Damper
金属增材制造粉末阻尼器阻尼机理研究及优化设计研究
  • 批准号:
    23KJ2035
  • 财政年份:
    2023
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
  • 批准号:
    2883937
  • 财政年份:
    2023
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Studentship
Analysis of wall damping effect of turbulence using non-local eddy diffusivity
利用非局部涡扩散系数分析湍流壁面阻尼效应
  • 批准号:
    23K03670
  • 财政年份:
    2023
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Influence of viscous damping model on time-history response of elastic-plastic systems
粘性阻尼模型对弹塑性系统时程响应的影响
  • 批准号:
    23K04122
  • 财政年份:
    2023
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Damping model required for seismic design using large-scale 3D model with multi-directional input
使用具有多方向输入的大型 3D 模型进行抗震设计所需的阻尼模型
  • 批准号:
    22H01645
  • 财政年份:
    2022
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Robustness Enhancement of Vibration-Controlled Structures by Damping Capacity Design Method
通过阻尼能力设计方法增强振动控制结构的鲁棒性
  • 批准号:
    22H01643
  • 财政年份:
    2022
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the damping of the upper structure of buildings and its frequency and amplitude dependence by reconstructing the wave field
通过重构波场研究建筑物上部结构的阻尼及其频率和振幅依赖性
  • 批准号:
    22K04417
  • 财政年份:
    2022
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Damping of pressure pulsations in CANDU fuel bundles
CANDU 燃料棒束中压力脉动的阻尼
  • 批准号:
    578558-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Alliance Grants
Reversible adhesion damping tapes based on layers of liquid crystalline elastomer
基于液晶弹性体层的可逆粘合阻尼胶带
  • 批准号:
    EP/X035468/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了