RAPID: Harnessing the power of multiple models for outbreak management

RAPID:利用多种模型的力量进行疫情管理

基本信息

  • 批准号:
    2028301
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

For many of the most damaging or worrying pathogens, such as the SARS-CoV-2 virus that causes COVID-19, multiple scientific groups develop quantitative models to forecast disease dynamics and assess possible interventions. These models often differ significantly in their projections and recommendations, reflecting different policy assumptions, as well as scientific, logistical, and other uncertainty about biological and management processes. Such uncertainty can be challenging for policymakers, hindering intervention planning and response. Policymakers may thus choose to rely on single trusted sources of advice, or on consensus where it appears, without confidence that decisions will be the best possible. However, less-than-optimal decisions mean more lives may be lost or more resources used than needed. In the face of biological, epidemiological, and operational uncertainties, systematic strategies to formalize the process of using multiple models to develop policy can improve the effectiveness and efficiency of policy responses to outbreaks. The COVID-19 pandemic outbreak is a major health issue for most countries in the world. This work is intended to directly address this current problem in real time. The work will also provide a framework for future outbreak response. Many models to address the COVID-19 pandemic are in development, or recently published. This project will develop multiple-model elicitation protocols, embedded in a strong framework for decision making, that formally acknowledges our uncertainty about this novel pathogen, and avoids known sources of bias. A full acknowledgment and accounting of uncertainty is critical both for decision making and for public communication. Nationally relevant objectives (e.g., minimizing deaths) and interventions (e.g., social distancing) will be assessed during this process. The project will merge formal expert elicitation methods (usually used to elicit opinions from individual experts) with modeling analyses from multiple research groups to enhance decision making for outbreak management. Groups will project disease dynamics under different interventions, and the ensemble of outputs will be analyzed using decision analysis to provide an evaluation of interventions against the policy makers’ objectives. The project will conduct this exercise to address key policy decision-making needs in the face of uncertainty during the COVID-19 pandemic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于许多最具破坏性或最令人担忧的病原体,比如导致新冠肺炎的SARS-CoV-2病毒,多个科学小组开发了定量模型,以预测疾病动态并评估可能的干预措施。这些模型的预测和建议往往有很大不同,反映了不同的政策假设,以及关于生物和管理过程的科学、后勤和其他不确定性。这种不确定性可能会给政策制定者带来挑战,阻碍干预规划和应对。因此,政策制定者可能会选择依赖单一可信的建议来源,或者在看起来像是共识的情况下,而不相信决策将是最好的。然而,不是最优的决定意味着可能会失去更多的生命或使用比所需更多的资源。面对生物、流行病学和操作上的不确定性,系统化的战略使使用多种模型制定政策的过程正规化,可以提高应对疫情的政策的效力和效率。新冠肺炎大流行疫情是世界上大多数国家面临的重大健康问题。这项工作旨在直接实时地解决当前的问题。这项工作还将为未来的疫情应对提供一个框架。许多应对新冠肺炎大流行的模型正在开发中,或最近发布。该项目将开发多模式诱导协议,嵌入一个强大的决策框架中,正式承认我们对这种新病原体的不确定性,并避免已知的偏见来源。充分认识和解释不确定性对于决策和公共交流都是至关重要的。在这一过程中,将评估与国家有关的目标(例如,尽量减少死亡)和干预措施(例如,社会距离)。该项目将把正式的专家引诱方法(通常用于征求个别专家的意见)与来自多个研究小组的建模分析相结合,以加强疫情管理的决策。小组将预测不同干预措施下的疾病动态,并将使用决策分析来分析总体产出,以提供针对政策制定者目标的干预措施评估。该项目将进行这项工作,以满足在新冠肺炎大灾难期间面临不确定性的关键政策决策需求。该奖项反映了美国国家科学基金会的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty.
  • DOI:
    10.1038/s41467-023-42680-x
  • 发表时间:
    2023-11-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Howerton E;Contamin L;Mullany LC;Qin M;Reich NG;Bents S;Borchering RK;Jung SM;Loo SL;Smith CP;Levander J;Kerr J;Espino J;van Panhuis WG;Hochheiser H;Galanti M;Yamana T;Pei S;Shaman J;Rainwater-Lovett K;Kinsey M;Tallaksen K;Wilson S;Shin L;Lemaitre JC;Kaminsky J;Hulse JD;Lee EC;McKee CD;Hill A;Karlen D;Chinazzi M;Davis JT;Mu K;Xiong X;Pastore Y Piontti A;Vespignani A;Rosenstrom ET;Ivy JS;Mayorga ME;Swann JL;España G;Cavany S;Moore S;Perkins A;Hladish T;Pillai A;Ben Toh K;Longini I Jr;Chen S;Paul R;Janies D;Thill JC;Bouchnita A;Bi K;Lachmann M;Fox SJ;Meyers LA;Srivastava A;Porebski P;Venkatramanan S;Adiga A;Lewis B;Klahn B;Outten J;Hurt B;Chen J;Mortveit H;Wilson A;Marathe M;Hoops S;Bhattacharya P;Machi D;Cadwell BL;Healy JM;Slayton RB;Johansson MA;Biggerstaff M;Truelove S;Runge MC;Shea K;Viboud C;Lessler J
  • 通讯作者:
    Lessler J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katriona Shea其他文献

Management of populations in conservation, harvesting and control.
保护、收获和控制方面的种群管理。
  • DOI:
    10.1016/s0169-5347(98)01381-0
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Katriona Shea
  • 通讯作者:
    Katriona Shea
The US COVID-19 and Influenza Scenario Modeling Hubs: Delivering long-term projections to guide policy.
美国 COVID-19 和流感情景建模中心:提供长期预测以指导政策。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Sara L Loo;E. Howerton;L. Contamin;Clair Smith;R. Borchering;Luke C Mullany;Samantha J Bents;Erica C Carcelén;Sung;Tiffany Bogich;Willem G van Panhuis;Jessica Kerr;J. Espino;Katie Yan;Harry Hochheiser;Michael C. Runge;Katriona Shea;Justin Lessler;Cécile Viboud;S. Truelove
  • 通讯作者:
    S. Truelove
Measuring plant dispersal: an introduction to field methods and experimental design
  • DOI:
    10.1007/s11258-006-9124-5
  • 发表时间:
    2006-03-12
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    James M. Bullock;Katriona Shea;Olav Skarpaas
  • 通讯作者:
    Olav Skarpaas
Effect of patch size and plant density of Paterson"s curse (Echium plantagineum) on the oviposition of a specialist weevil, Mogulones larvatus
帕特森诅咒 (Echium plantagineum) 的斑块大小和植物密度对专业象鼻虫 Mogulones larvatus 产卵的影响
  • DOI:
    10.1007/s004420000425
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Katriona Shea;M. Smyth;A. Sheppard;R. Morton;J. Chalimbaud
  • 通讯作者:
    J. Chalimbaud
Oviposition response of the biocontrol agent <em>Rhinocyllus conicus</em> to resource distribution in its invasive host, <em>Carduus nutans</em>
  • DOI:
    10.1016/j.biocontrol.2020.104369
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zeynep Sezen;Ottar N. Bjørnstad;Katriona Shea
  • 通讯作者:
    Katriona Shea

Katriona Shea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katriona Shea', 18)}}的其他基金

RAPID: Variant Emergence and Scenario Design for the COVID-19 Scenario Modeling Hub
RAPID:COVID-19 场景建模中心的变体出现和场景设计
  • 批准号:
    2220903
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: COVID-19 Scenario Modeling Hub to harness multiple models for long-term projections and decision support
RAPID:COVID-19 场景建模中心,利用多个模型进行长期预测和决策支持
  • 批准号:
    2126278
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Optimal allocation of COVID-19 testing based on context-specific outbreak control objectives
RAPID:根据具体情况的疫情控制目标优化 COVID-19 检测分配
  • 批准号:
    2037885
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Workshop to Advance Theory in Ecology; October 21, 2019; State College, PA
推进生态学理论讲习班;
  • 批准号:
    1908538
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSFDEB-NERC: Diversity, Disturbance and Invasion: Using experimental microcosms to illuminate ecological theory
NSFDEB-NERC:多样性、干扰和入侵:利用实验微观世界阐明生态理论
  • 批准号:
    1556444
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Value of Information and Structured Decision-Making for Management of Ebola
RAPID:信息和结构化决策对于埃博拉管理的价值
  • 批准号:
    1514704
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
MPS-BIO: Dynamics and stability of plant-pollinator mutualistic networks in response to ecological perturbations
MPS-BIO:植物-传粉媒介互惠网络响应生态扰动的动态和稳定性
  • 批准号:
    1313115
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Disturbance Theory: The effects of different types of environmental perturbation on species invasion and coexistence
扰动理论:不同类型的环境扰动对物种入侵和共存的影响
  • 批准号:
    0815373
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
QEIB: Importance of Individual Variation to the Demography, Dispersal, and Spread of Invasive and Endangered Species: An Integral Projection Model Approach
QEIB:个体变异对入侵和濒危物种的人口统计、扩散和传播的重要性:整体投影模型方法
  • 批准号:
    0614065
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
QEIB: Spatial Spread of Invasive Carduus Thistles: Linking Demography and Dispersal
QEIB:入侵性飞蓟属蓟的空间传播:将人口统计与传播联系起来
  • 批准号:
    0315860
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
  • 批准号:
    DE240100080
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Harnessing the Power of Diels-Alderases in Sustainable Chemoenzymatic Synthesis
利用 Diels-Alderases 进行可持续化学酶合成
  • 批准号:
    BB/Y000846/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Harnessing the Power of Wind: Revolutionising Wind Farm Optimisation
利用风能:彻底改变风电场优化
  • 批准号:
    DP240101820
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Projects
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333951
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Harnessing the Positive Power of Negative Links for Network Analytics
职业:利用负面链接的积极力量进行网络分析
  • 批准号:
    2239881
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Harnessing the power of diverse populations to empower clinical translation of genome-wide association studies of common human disease
利用不同人群的力量,促进人类常见疾病全基因组关联研究的临床转化
  • 批准号:
    MR/W029626/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Harnessing the power of the microbiome to increase productivity, sustainability, and resilience in controlled-environment agriculture
利用微生物组的力量来提高受控环境农业的生产力、可持续性和复原力
  • 批准号:
    10054053
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333950
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333949
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF'S Eddie Bernice Johnson INCLUDES Coordination Hub: Harnessing the Power of Liberatory Design for Equity-Driven Systems Change
NSF 的埃迪·伯尼斯·约翰逊 (Eddie Bernice Johnson) 包括协调中心:利用自由设计的力量实现公平驱动的系统变革
  • 批准号:
    2320947
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了