RAPID: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Prevention: Multiple-Site Binding with Fusing Aptamers to mitigate Coronavirus Disease 2019

RAPID:严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) - 预防:通过融合适体进行多位点结合以减轻 2019 年冠状病毒病

基本信息

  • 批准号:
    2028531
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

The SARS-CoV-2 causes the novel coronavirus infectious disease 2019 (COVID-19). The binding of the viral spike protein to a receptor protein (called the angiotensin converting enzyme 2, or ACE2) is the first step in the infection of the human host cell. Blocking or inhibiting this interaction could stop the invasion of the human cell by this highly infectious virus. With this award, the Chemistry of Life Processes program is supporting the research of Dr. Xiaohong Tan at Bowling Green University in Bowling Green, Ohio to create DNA aptamers to inhibit this initial step of viral invasion. Aptamers are short sequences of DNA that fold into a shape that matches that of a target molecule, thereby keeping other molecules from binding. These DNA aptamers are “designed” by successive selection of molecules from large mixtures of different sequences, resulting in a few sequences that keep all other DNAs from binding the target. Dr. Tan uses this selection process to find DNA aptamers that bind tightly to the SARS-CoV-2 spike protein. Two of more of the identified DNA aptamers are linked together to create “super binders” that are much better at inhibiting the interaction than would any single aptamer. Constructing DNA aptamers that block the invasion of SARS-CoV-2 into human cells may lead to the design of antiviral agents that help lessen the infectivity that causes the COVID-19 pandemic. Educational and training activities will focus on postdoctoral researchers learning cutting edge techniques in chemical biology on a “front line” research problem. The team is developing ways to communicate their science to the public, to K-12 institutions, and to other research groups using distance learning technologies.The goal of this project is to develop polymeric molecules (fusion DNA aptamers) that significantly interact with the binding domain of SARS-CoV-2. The objective is to effectively block the virus from binding to the specific ACE2 receptor, thereby blocking the entry of the virus into human cells and, as a result, its ability to cause COVID-19 infections. Professor Tan uses SELEX (systematic evolution of ligands by exponential enrichment) to identify individual aptamers that interact with three distinct regions on the cell binding domain of the spike (S) protein of SARS-CoV-2. The affinities of aptamers to their targets are measured through standard binding assays. These individual high affinity DNA aptamers are connected together using nucleic acid or chemical linkers to make fusion aptamers that have affinities comparable to those of antibodies. The ability of these fused DNA aptamer “super binders” to effectively block this interaction is tested against a recombinant SARS-CoV-2 spike protein using standard technologies, as well as live SARS-CoV-2 through collaboration with the University of Toledo Medical School.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
SARS-CoV-2导致2019年新型冠状病毒传染病(COVID-19)。病毒刺突蛋白与受体蛋白(称为血管紧张素转换酶2或ACE 2)的结合是感染人类宿主细胞的第一步。阻断或抑制这种相互作用可以阻止这种高传染性病毒入侵人类细胞。有了这个奖项,生命过程的化学计划正在支持俄亥俄州Bowling绿色的Bowling绿色大学的Xiaohong Tan博士的研究,以创建DNA适体来抑制病毒入侵的这一初始步骤。适体是DNA的短序列,其折叠成与靶分子匹配的形状,从而防止其他分子结合。这些DNA适体是通过从大量不同序列的混合物中连续选择分子来“设计”的,从而产生一些序列,这些序列阻止所有其他DNA结合靶标。Tan博士使用这种选择过程来寻找与SARS-CoV-2刺突蛋白紧密结合的DNA适体。两个或两个以上的已鉴定的DNA适体连接在一起,形成“超级结合剂”,比任何单一的适体更能抑制相互作用。构建DNA适体,阻止SARS-CoV-2入侵人类细胞,可能会导致抗病毒药物的设计,有助于减少导致COVID-19大流行的传染性。 教育和培训活动将侧重于博士后研究人员学习化学生物学前沿技术,以解决“前线”研究问题。该团队正在开发利用远程学习技术向公众、K-12机构和其他研究小组传播他们的科学的方法。该项目的目标是开发与SARS-CoV-2的结合结构域显著相互作用的聚合分子(融合DNA适体)。其目的是有效阻断病毒与特异性ACE 2受体结合,从而阻断病毒进入人体细胞,从而阻断其引起COVID-19感染的能力。 Tan教授使用SELEX(通过指数富集的配体系统进化)来识别与SARS-CoV-2的刺突(S)蛋白的细胞结合结构域上的三个不同区域相互作用的单个适体。通过标准结合测定来测量适体对其靶标的亲和力。使用核酸或化学接头将这些单独的高亲和力DNA适体连接在一起,以制备具有与抗体相当的亲和力的融合适体。这些融合的DNA适体“超级粘合剂”有效阻断这种相互作用的能力是通过标准技术对重组SARS-CoV-2刺突蛋白进行测试的,以及通过与托莱多大学医学院合作对活的SARS-CoV-2进行测试的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaohong Tan其他文献

One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine
一步溶剂剥离石墨制备柠檬黄高灵敏度电化学传感器
  • DOI:
    10.1016/j.snb.2014.02.064
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinjian Song;Zhen Shi;Xiaohong Tan;Shenghui Zhang;Guishen Liu;Kangbing Wu
  • 通讯作者:
    Kangbing Wu
Subtiligase as a hydrothiolase for the synthesis of peptide thioacids
Subtiligase 作为氢硫解酶用于合成肽硫代酸
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaohong Tan;Renliang Yang;Andre Wirjo;Chuan
  • 通讯作者:
    Chuan
Effects of slope aspect and tillage type on soil microbial biomass and its stoichiometric ratios in karst trough valley
喀斯特槽谷坡向和耕作方式对土壤微生物生物量及其化学计量比的影响
  • DOI:
    10.1016/j.catena.2025.109235
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Xiaohong Tan;Lisha Jiang;Wuyi Li;Yuanyue Xia;Xin Cheng;Xiuying Xu;Fengling Gan;Youjin Yan;Yuchuan Fan;Junbing Pu
  • 通讯作者:
    Junbing Pu
A Focused High Throughput Functional Screen <em>Identifies Novel Targets for aggressive B-Cell Lymphoma</em>
  • DOI:
    10.1182/blood-2024-209515
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Chengcheng Liao;Sha He;Jie Sun;Qing Ke;Chao Rong;Baoping Guo;Xiaohong Tan;Srikanth Talluri;Masood A. Shammas;Nikhil C. Munshi;Hong Cen
  • 通讯作者:
    Hong Cen
Dual-emission ratiometric fluorescence sensor based on in situ formation of MAPbBr<sub>3</sub> perovskite nanocrystals in europium metal-organic frameworks for detection of methylamine gas
  • DOI:
    10.1016/j.snb.2024.137092
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yishan Li;Xiaohong Tan;Shaoru Wu;Wenping Hong;Jiamin Luo;Shanshan Zhao;Libo Sun;Jinming Lin;Qiang Chen;Maosheng Zhang
  • 通讯作者:
    Maosheng Zhang

Xiaohong Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Elucidating the Function of Astrocyte Regeneration in an Acute Severe Model of Neuromyelitis Optica
阐明星形胶质细胞在急性重症视神经脊髓炎模型中的再生功能
  • 批准号:
    23KJ1489
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
  • 批准号:
    10569397
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
ALbumin To Enhance Recovery after severe Acute Kidney Injury (ALTER-AKI): a multicentre randomized controlled trial.
白蛋白促进严重急性肾损伤后的恢复 (ALTER-AKI):一项多中心随机对照试验。
  • 批准号:
    489100
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
Study for developent of innovative acute brain protection device to dramatically improve functional outcome after severe ischemic stroke
研究开发创新型急性脑保护装置以显着改善严重缺血性中风后的功能结果
  • 批准号:
    23K14790
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of the effects of acute phase heart rate control on severe burn patients.
严重烧伤患者急性期心率控制效果的调查
  • 批准号:
    23K08438
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: A novel peripheral nerve matrix platform for severe acute peripheral nerve injuries
SBIR II期:用于治疗严重急性周围神经损伤的新型周围神经基质平台
  • 批准号:
    2151582
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Deciphering the Link between Severe Acute Respiratory Coronavirus 2 Infection and Long-Term Neurological and Pulmonary Sequelae
解读严重急性呼吸道冠状病毒2感染与长期神经和肺部后遗症之间的联系
  • 批准号:
    10555082
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Functional magnetic resonance imaging as a prognostic tool in acute severe brain injury
功能磁共振成像作为急性严重脑损伤的预后工具
  • 批准号:
    473887
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Miscellaneous Programs
Improving patient care in severe acute brain injury: a web/mobile/tablet-based communication and decision support tool for clinicians and families in the neuro-ICU
改善严重急性脑损伤患者的护理:为神经重症监护病房的临床医生和家属提供基于网络/移动/平板电脑的通信和决策支持工具
  • 批准号:
    10589141
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
FEASIBILITY AND ACCEPTABILITY OF CRITICAL TIME INTERVENTION TO SUPPORT PEOPLE WITH SEVERE MENTAL ILLNESS FOLLOWING POST-ACUTE HOSPITAL DISCHARGE IN SOUTH AFRICA
为南非急性出院后严重精神疾病患者提供关键时间干预的可行性和可接受性
  • 批准号:
    10538696
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了