Principles of Geometrically-Frustrated Assembly
几何受挫装配原理
基本信息
- 批准号:2028885
- 负责人:
- 金额:$ 43.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education to advance fundamental understanding of geometrically frustrated self-assembly of soft materials. Self-assembly is a process by which nanoscale “building blocks” spontaneously associate into multi-unit structures, which underlies structure formation of a vast range of useful material structures in the biological and synthetic world. This project aims to advance fundamental understanding of a new “class” of such systems, known as geometrically frustrated assemblies (GFAs). Geometric-frustration occurs when the shape and interaction between building-blocks lead to “misfitting” arrangements when they aggregate. Such frustrated building blocks are not unlike “warped puzzle pieces” that can fit together edge to edge, but whose shape misfit requires more and more straining to piece together larger and larger patches of the puzzle. In the assemblies of these nanoscale analogs – such as polymers, proteins, or colloidal particles – frustration can give rise to new mechanisms for the assembly process to “sense its size”, which are not possible in assemblies without shape misfit. The buildup of shape misfit in GFAs is related to a unique behavior known as self-limiting assembly, in which the self-assembly process can autonomously and robustly terminate a finite number of building blocks that are predetermined based on properties of the sub-unit shape, interactions and flexibility. As such, GFAs pose a potential pathway to engineer new types of self-limiting assemblies, whose finite sizes can be “programmed” from the design and synthesis of building block properties. So, realizing the ability to engineer the self-limiting size of material assemblies through programmed frustration would open up potentially transformative, bottom-up pathways to fabricate functional material architectures, for example injectable biomedical scaffolds or paintable photonic coatings, with the complexity and size control that is currently only accessible via top-down techniques, such as 3D printing and lithography.Capitalizing on this potential requires an understanding of the basic principles that connect the properties of nanoscale, frustrated building blocks to the emergent structures they form on size scales much bigger than those subunits. These properties include building block shape misfit, interactions, and flexibility. This project will develop theoretical frameworks that address this core objective.Beyond potential impacts on materials technology deriving from advancing the principles of GFA, the project will achieve several additional broader impacts. These include the training and mentorship of undergraduate and graduate students and a postdoctoral researcher in statistical and computational approaches to materials physics, as well as efforts of the PI to advance participation of K12 student populations from under-resourced communities in graduate student-led STEM outreach and education.TECHNICAL SUMMARYThis award supports theoretical and computational research and education to advance fundamental understanding of geometrically frustrated self-assembly of soft materials. Geometrically frustrated assembly (GFA) is an emerging paradigm in which the local misfits between soft “building blocks" give rise to intra-domain stress gradients on size scales that far exceed the block dimensions. The accumulation of long-range stresses in GFA underlies scale-dependent behaviors without counterpart in canonical assemblies that lack frustration, including the existence of self-limiting states where the equilibrium assembly dimensions are finite, yet much larger than the subunits themselves. The current understanding of GFA derives from continuum based zero-temperature models developed to address seemingly distinct phenomena occurring in microscopically diverse systems, including 2D crystalline shells, chiral membranes, self-twisting fibers, and multi-layer stacks of curved sheets. To date, GFA has been studied as a seemingly atypical phenomenon appearing in distinctsystems. The broad objective of this project is to advance a unified theoretical perspective on GFA, capable of classifying and predicting behavior of microscopically distinct systems according to common mechanisms and emergent outcomes. Project research addresses two key and unmet challenges. First, how is the accumulation of frustration at the mesoscale controlled by the microscopic properties of the subunits, such as ill-fitting shapes and interactions, and how do these properties determine the escape size, the maximum size beyond which frustrated assemblies are driven to unlimited bulk states? This will be addressed through the analytical and computational study of generic classes of “ill-fitting'' particles, which determine the map from particle shape and intra-assembly mechanics to the escape size of assemblies. Second, for a given frustration of mesoscale order, what role do thermal fluctuations play in setting the self-limiting size and shape of GFA, and how does finite temperature control phase boundaries between dispersed, self-limiting, and bulk escaped states? This challenge will be addressed through the study of a minimal model for GFA that will establish the statistical mechanical foundation through its the finite-temperature description.While geometric frustration is a broad theme in condensed matter, it has heretofore been appreciated in bulk systems how its emergent properties derive from extensive arrays of defects required in infinite systems. The physics of GFA introduces previously unexplored aspects of frustration, particularly associated with boundary degrees of freedom of finite domains and emergent length scales associated with competing mechanisms of frustration escape in soft systems. In so far that it has been studied, GFA has been approached as a largely isolated phenomenon appearing in microscopically distinct systems. This research will advance a unified framework for understanding the emergent physics GFA across these distinct systems. Scientific impacts of this research are further advanced through collaborations between PI with experimentalists studying both existing GFA systems as well as those targeting “GFA by design".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理论和计算研究和教育,以增进对软材料几何受挫自组装的基本理解。自组装是纳米级“构建块”自发结合成多单元结构的过程,它是生物和合成世界中各种有用材料结构形成的基础。 该项目旨在增进对此类系统的新“类别”的基本理解,即几何挫败组件 (GFA)。 当构建块之间的形状和相互作用导致它们聚集时出现“不合适”的排列时,就会发生几何挫败。 这种受挫的积木与“扭曲的拼图块”没有什么不同,它们可以边对边地拼在一起,但其形状不匹配需要越来越多的压力才能拼凑出越来越大的拼图块。 在这些纳米级类似物(例如聚合物、蛋白质或胶体颗粒)的组装中,挫折可能会产生组装过程“感知其尺寸”的新机制,这在没有形状失配的组装中是不可能的。 GFA 中形状失配的累积与一种称为自限制组装的独特行为有关,其中自组装过程可以自主且稳健地终止基于子单元形状、相互作用和灵活性的属性预先确定的有限数量的构建块。 因此,GFA 为设计新型自限制组件提供了一条潜在途径,其有限尺寸可以通过构建块属性的设计和合成来“编程”。 因此,实现通过程序挫败设计材料组件的自我限制尺寸的能力,将为制造功能材料结构开辟潜在的变革性、自下而上的途径,例如可注射的生物医学支架或可涂漆的光子涂层,其复杂性和尺寸控制目前只能通过自上而下的技术(例如3D打印和光刻)实现。利用这种潜力需要了解连接的基本原理 纳米级的属性,受挫的构件形成的新兴结构的尺寸比这些亚基大得多。这些属性包括构建块形状失配、相互作用和灵活性。该项目将开发解决这一核心目标的理论框架。除了因推进 GFA 原则而对材料技术产生潜在影响外,该项目还将实现一些其他更广泛的影响。 其中包括对材料物理统计和计算方法方面的本科生和研究生以及博士后研究员进行培训和指导,以及 PI 为促进来自资源贫乏社区的 K12 学生群体参与研究生主导的 STEM 推广和教育所做的努力。技术摘要该奖项支持理论和计算研究和教育,以促进对软材料几何受阻自组装的基本理解。 材料。 几何挫败组装(GFA)是一种新兴范例,其中软“构建块”之间的局部失配导致尺寸尺度上的域内应力梯度远远超过块尺寸。 GFA 中长程应力的积累是尺度相关行为的基础,在缺乏挫败感的规范装配中没有对应的行为,包括存在自限制状态,其中平衡装配尺寸是有限的,但比子单元本身大得多。 目前对 GFA 的理解源自基于连续体的零温度模型,该模型是为了解决微观多样化系统中出现的看似不同的现象而开发的,包括二维晶体壳、手性膜、自扭转纤维和弯曲片材的多层堆叠。 迄今为止,GFA 已被视为出现在不同系统中的一种看似非典型的现象。该项目的总体目标是提出关于 GFA 的统一理论视角,能够根据共同机制和紧急结果对微观不同系统的行为进行分类和预测。 项目研究解决了两个关键且尚未解决的挑战。 首先,中尺度的挫败积累是如何由子单元的微观特性(例如不合适的形状和相互作用)控制的,以及这些特性如何确定逃逸尺寸,即受挫组件被驱动到无限块体状态的最大尺寸? 这将通过对“不合适”粒子的一般类别进行分析和计算研究来解决,这些粒子确定了从粒子形状和内部组装力学到组装逃逸尺寸的映射。其次,对于给定的介观秩序挫败,热波动在设定 GFA 的自限制尺寸和形状方面发挥什么作用,以及有限温度如何控制分散、自限制和整体逃逸之间的相边界 州? 这一挑战将通过研究 GFA 的最小模型来解决,该模型将通过其有限温度描述建立统计力学基础。虽然几何挫败是凝聚态物质中的一个广泛主题,但迄今为止,在散装系统中,人们已经认识到其突现特性是如何从无限系统所需的广泛缺陷阵列中衍生出来的。 GFA 的物理原理引入了之前未曾探索过的挫败感方面,特别是与 有限域的边界自由度和与软系统中挫败逃逸的竞争机制相关的紧急长度尺度。就目前的研究而言,GFA 被视为出现在微观不同系统中的一种很大程度上孤立的现象。 这项研究将推进一个统一的框架,用于理解这些不同系统中的新兴物理 GFA。 通过 PI 与实验人员之间的合作,这项研究的科学影响得到进一步提升 现有的 GFA 系统以及针对“设计 GFA”的系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dispersed, Condensed, and Self-Limiting States of Geometrically Frustrated Assembly
几何受挫组装的分散态、凝聚态和自限态
- DOI:10.1103/physrevx.13.041010
- 发表时间:2023
- 期刊:
- 影响因子:12.5
- 作者:Hackney, Nicholas W.;Amey, Christopher;Grason, Gregory M.
- 通讯作者:Grason, Gregory M.
Building blocks of non-Euclidean ribbons: size-controlled self-assembly via discrete frustrated particles
非欧几里得带的构建块:通过离散受挫粒子进行尺寸控制的自组装
- DOI:10.1039/d2sm01371a
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Hall, Douglas M.;Stevens, Mark J.;Grason, Gregory M.
- 通讯作者:Grason, Gregory M.
Focusing frustration for self-limiting assembly of flexible, curved particles
聚焦柔性弯曲粒子自限性组装的挫败感
- DOI:10.1103/physrevresearch.4.033035
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Tanjeem, Nabila;Hall, Douglas M.;Minnis, Montana B.;Hayward, Ryan C.;Grason, Gregory M.
- 通讯作者:Grason, Gregory M.
Stress accumulation versus shape flattening in frustrated, warped-jigsaw particle assemblies
- DOI:10.1088/1367-2630/ac753e
- 发表时间:2022-04
- 期刊:
- 影响因子:3.3
- 作者:Isaac R. Spivack;Douglas M Hall;G. Grason
- 通讯作者:Isaac R. Spivack;Douglas M Hall;G. Grason
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Grason其他文献
Gregory Grason的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Grason', 18)}}的其他基金
Understanding and engineering geometrically frustrated self-assembly
理解和设计几何受阻的自组装
- 批准号:
2349818 - 财政年份:2024
- 资助金额:
$ 43.33万 - 项目类别:
Continuing Grant
Geometric Instabilities of Filamentous Matter
丝状物质的几何不稳定性
- 批准号:
1608862 - 财政年份:2016
- 资助金额:
$ 43.33万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics and Structural Polymorphism of Bacterial Flagellar Assemblies
合作研究:细菌鞭毛组件的力学和结构多态性
- 批准号:
1068852 - 财政年份:2011
- 资助金额:
$ 43.33万 - 项目类别:
Standard Grant
CAREER: The Statistical Mechanics of Filamentous Assemblies
职业:丝状组件的统计力学
- 批准号:
0955760 - 财政年份:2010
- 资助金额:
$ 43.33万 - 项目类别:
Continuing Grant
相似海外基金
Understanding and engineering geometrically frustrated self-assembly
理解和设计几何受阻的自组装
- 批准号:
2349818 - 财政年份:2024
- 资助金额:
$ 43.33万 - 项目类别:
Continuing Grant
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2022
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2021
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2020
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Preparation of Copper Hydroxide Materials as Geometrically Frustrated Magnets and their Magnetic Behaviors under Electric Field
几何受挫磁体氢氧化铜材料的制备及其电场下的磁行为
- 批准号:
19K05656 - 财政年份:2019
- 资助金额:
$ 43.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dimensionality confined magnetism in the RuCl3 based correlated 2D materials with geometrically frustrated lattices
具有几何挫败晶格的 RuCl3 相关二维材料中的维度受限磁性
- 批准号:
419941440 - 财政年份:2019
- 资助金额:
$ 43.33万 - 项目类别:
Research Grants
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2019
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2018
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2017
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2016
- 资助金额:
$ 43.33万 - 项目类别:
Discovery Grants Program - Individual