RAPID: Collaborative Research: Using Data to Understand the Effects of Transportation on the Spread of COVID-19 as a Propagator and a Control Mechanism

RAPID:协作研究:利用数据了解交通作为传播者和控制机制对 COVID-19 传播的影响

基本信息

  • 批准号:
    2028946
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The spread of COVID-19 has broad implications both for human health and economies around the world. This Smart and Connected Communities project will monitor the spread of COVID-19 by collecting real-time information on active COVID-19 cases, understand how transportation has driven the spread of the virus, and quantify how travel restrictions have limited the spread of the virus. The data collection will gather and store real-time information on the spread of COVID-19 and a timeline of travel restrictions for three sets of communities. This data will then be employed to model how the virus propagates between communities via transportation using various network-dependent epidemic models. Finally, using the collected data and the calibrated epidemic models, analysis will be conducted to understand how effective the different modifications of the transportation network structure, such as travel restrictions in each set of communities, are at slowing the spread of COVID-19, while factoring in the economic effects. Understanding how the transportation network between communities acts as a propagator of the virus, and how control actions taken by local and national governments to limit or block travel within and between regions slow the spread of the virus will provide the framework for the development of mitigation strategies for the COVID-19 pandemic, as well as other possible outbreaks in the future. These strategies will limit the loss of human life and reduce the economic impacts of the virus. The methods developed as a result of this work will also be beneficial in the future for battling subsequent outbreaks.This project will apply network modeling techniques to understand how different control actions on the transportation network influence the spread of the virus between communities. The understanding gained herein will inform decision makers during this and future outbreaks as to which transportation-related mitigation strategies are best to use in different situations and at what point in the outbreak to use them in order to minimize both the spread of virus as well as the economic impact. The research will draw on and contribute to wide-ranging and fundamental results in statistical data analysis, mathematical modeling and analysis of epidemic processes, mathematical programming, network analysis, and control theory. The resulting study of problems will contribute to advancement of mathematical modeling and analysis of infectious diseases, and mitigation optimization algorithms and heuristics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19 的传播对世界各地的人类健康和经济产生广泛影响。该智能互联社区项目将通过收集活跃的 COVID-19 病例的实时信息来监测 COVID-19 的传播,了解交通如何推动病毒的传播,并量化旅行限制如何限制病毒的传播。数据收集将收集和存储有关 COVID-19 传播的实时信息以及三组社区的旅行限制时间表。然后,这些数据将用于使用各种依赖于网络的流行病模型来模拟病毒如何通过运输在社区之间传播。最后,利用收集到的数据和经过校准的流行病模型进行分析,以了解交通网络结构的不同修改(例如每组社区的旅行限制)在减缓 COVID-19 传播方面的效果,同时考虑到经济影响。了解社区之间的交通网络如何充当病毒的传播者,以及地方和国家政府为限制或阻止区域内和区域间旅行而采取的控制行动如何减缓病毒的传播,将为制定针对 COVID-19 大流行以及未来可能爆发的其他疫情的缓解策略提供框架。这些策略将限制人员生命损失并减少病毒的经济影响。这项工作开发的方法也将有益于将来对抗随后的疫情爆发。该项目将应用网络建模技术来了解交通网络上的不同控制措施如何影响病毒在社区之间的传播。本文获得的理解将帮助决策者在这次和未来的疫情爆发期间了解在不同情况下最好使用哪些与交通相关的缓解策略,以及在疫情爆发的什么时候使用这些策略,以最大限度地减少病毒的传播和经济影响。该研究将借鉴并贡献统计数据分析、流行病过程数学建模和分析、数学规划、网络分析和控制理论方面的广泛基础成果。由此产生的问题研究将有助于传染病的数学建模和分析以及缓解优化算法和启发式的进步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Effect of Population Flow on Epidemic Spread: Analysis and Control
  • DOI:
    10.1109/cdc45484.2021.9683081
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brooks A. Butler;Ciyuan Zhang;I. Walter;N. Nair;Raphael E. Stern;Philip E. Par'e
  • 通讯作者:
    Brooks A. Butler;Ciyuan Zhang;I. Walter;N. Nair;Raphael E. Stern;Philip E. Par'e
Quantifying the Traffic Impacts of the COVID-19 Shutdown
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raphael Stern其他文献

RACER: Rational Artificial Intelligence Car-following-model Enhanced by Reality
RACER:现实增强的理性人工智能跟车模型
  • DOI:
    10.48550/arxiv.2312.07003
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyi Li;Alexander Halatsis;Raphael Stern
  • 通讯作者:
    Raphael Stern
Efficient pedestrian and bicycle traffic flow estimation combining mobile-sourced data with route choice prediction
将移动源数据与路径选择预测相结合的高效行人与自行车交通流量估计
Relational model systems: The craft of logic
  • DOI:
    10.1007/bf00485462
  • 发表时间:
    1984-08-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Raphael Stern
  • 通讯作者:
    Raphael Stern
Understanding driver-pedestrian interactions to predict driver yielding: naturalistic open-source dataset collected in Minnesota
了解驾驶员与行人的互动以预测驾驶员让行:在明尼苏达州收集的自然开源数据集
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyi Li;Joshua Klavins;Te Xu;N. M. Zafri;Raphael Stern
  • 通讯作者:
    Raphael Stern
City college studies in the history and philosophy of science and technology: Series editors' preface
  • DOI:
    10.1007/bf00485613
  • 发表时间:
    1984-07-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Martin Tamny;Raphael Stern
  • 通讯作者:
    Raphael Stern

Raphael Stern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了