RAPID - Impact of Coronaviridae lipid, protein and RNA interaction on copper, zinc, and their derivatives coated personal protective equipment surfaces and viral infectivity
RAPID - 冠状病毒科脂质、蛋白质和 RNA 相互作用对铜、锌及其衍生物涂覆的个人防护装备表面和病毒感染性的影响
基本信息
- 批准号:2029579
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Personal protective equipment (PPE), such as face masks, gloves and surgical gowns, forms the primary barrier for medical, healthcare and laboratory workers for protection against contact with severe acute respiratory syndrome coronavirus (SARS-CoV-2). The virus lives on the surface of currently available PPE materials for many days. Recent evidence suggests that copper or copper zinc oxide composites with antimicrobial activity may inactivate virus. However, the mechanism for this is poorly understood at present. This project will test the hypothesis that PPE surfaces coated with copper or zinc oxide nanoparticles (NANO-PPE) will cause denaturation and degradation of viral biomolecules, thus leading to viral inactivation. The project sheds new insight into hybrid materials containing these biotic metals on the PPE surface, especially characterizing their interactions to biomaterials such as lipid, protein or RNA and the impact on structure-function. The RAPID project draws on several complementary areas of technology including, nanomaterial surface chemistry and processes, biophysics, biochemistry, and virology. This provides a unique interdisciplinary training environment for a diverse group of post-graduate, graduate and undergraduate students to engage in this cutting-edge research. Societal impact is that NANO-PPE stands to inactivate virus on contact, better protecting personnel from viral infection and thus limiting community spread, and long-term may help protect against other healthcare associated infections and drug resistant bacteria. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).The primary objective of this RAPID project is to gain a more fundamental understanding of nanoscale interactions of viral or viral-mimetic lipid, protein and RNA to PPE materials surface-coated with copper or copper/zinc oxide composites. The goals of the project are; 1) to fabricate PPE materials coated with copper and/or zinc oxide nanoparticles, mixtures and composites, 2) to characterize their nano-bio interactions and quantify the biomolecular denaturation and degradation caused by the nanoscale interaction, and 3) to place surrogate respiratory virus in contact with NANO-PPE and determine functional impact on viral titer and infectivity. Standard industrial scale processes such as electrospinning and deep coating will be used to coat the surface of PPE (face-mask, nitrile glove and surgical gown) with copper and zinc oxide nanoparticles. Surface interactions with the viral lipid, protein and RNA will be investigated by transmission electron microscopy, FT-IR, Raman/Photoluminescence, and x-ray photoelectron spectroscopy. Biomolecular denaturation and degradation will be quantified by 2-dimensional fluorescence difference spectroscopy, circular dichroism, gel electrophoresis, tryptic digestion and liquid chromatography/mass spectroscopy. Finally, viral titer and RT-PCR will be used to quantify impact of nanoscale interaction on biological activity. Overall, the experiments will probe structure-functional impact of nanoscale interaction of virus and its inhibition by coming into contact with NANO-PPE. The project will be integrated into a graduate class in Nanomedicine within a unit on nanoscale interactions and characterization methods and into the PI and co-PIs research programs involving undergraduate, masters, PhD and post-doctoral students. Products of this research will be translated to a corporate partner for rapid manufacturing and introduction into the healthcare and laboratory supply chain. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
口罩、手套和手术服等个人防护装备 (PPE) 是医疗、保健和实验室工作人员防止接触严重急性呼吸综合征冠状病毒 (SARS-CoV-2) 的主要屏障。该病毒在目前可用的个人防护装备材料的表面上存活很多天。最近的证据表明,具有抗菌活性的铜或铜锌氧化物复合材料可以灭活病毒。然而,目前对其机制知之甚少。该项目将测试以下假设:涂有铜或氧化锌纳米颗粒(NANO-PPE)的 PPE 表面会导致病毒生物分子变性和降解,从而导致病毒失活。该项目对 PPE 表面含有这些生物金属的混合材料提供了新的见解,特别是表征它们与脂质、蛋白质或 RNA 等生物材料的相互作用以及对结构功能的影响。 RAPID 项目利用了几个互补的技术领域,包括纳米材料表面化学和工艺、生物物理学、生物化学和病毒学。这为多元化的研究生、研究生和本科生参与这一前沿研究提供了独特的跨学科培训环境。社会影响在于,纳米个人防护装备可以在接触时灭活病毒,更好地保护人员免受病毒感染,从而限制社区传播,长期来看可能有助于防止其他医疗保健相关感染和耐药细菌。该项目由化学、生物工程、环境和运输系统 (CBET) 部门和刺激竞争研究既定计划 (EPSCoR) 联合资助。该 RAPID 项目的主要目标是更基本地了解病毒或病毒模拟脂质、蛋白质和 RNA 与表面涂有铜或铜/氧化锌复合材料的 PPE 材料之间的纳米级相互作用。该项目的目标是; 1) 制造涂有铜和/或氧化锌纳米颗粒、混合物和复合材料的 PPE 材料,2) 表征其纳米生物相互作用并量化纳米级相互作用引起的生物分子变性和降解,3) 将替代呼吸道病毒与 NANO-PPE 接触,并确定对病毒滴度和感染性的功能影响。将使用静电纺丝和深层涂层等标准工业规模工艺,在 PPE(口罩、丁腈手套和手术衣)的表面涂覆铜和氧化锌纳米颗粒。将通过透射电子显微镜、FT-IR、拉曼/光致发光和 X 射线光电子能谱研究表面与病毒脂质、蛋白质和 RNA 的相互作用。 生物分子变性和降解将通过二维荧光差异光谱、圆二色性、凝胶电泳、胰蛋白酶消化和液相色谱/质谱进行定量。最后,病毒滴度和 RT-PCR 将用于量化纳米级相互作用对生物活性的影响。 总体而言,这些实验将探讨病毒纳米级相互作用的结构功能影响及其通过与 NANO-PPE 接触而受到的抑制。该项目将被纳入纳米医学研究生班的纳米级相互作用和表征方法单元内,并纳入涉及本科生、硕士、博士和博士后的 PI 和 co-PI 研究项目。这项研究的产品将被转化为企业合作伙伴进行快速制造并引入医疗保健和实验室供应链。 该项目由化学、生物工程、环境和运输系统 (CBET) 部门和刺激竞争性研究既定计划 (EPSCoR) 联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Gaudreault其他文献
emuPoster #17/u -/em Development of long-read targeted whole genome sequencing for African and classical swine fever viruses
鸸鹋海报 #17/u -/em 非洲猪瘟病毒和经典猪瘟病毒长读长靶向全基因组测序的发展
- DOI:
10.1016/j.onehlt.2024.100812 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Chester D. McDowell;Taeyong Kwon;Patricia Assato;Emily Mantlo;Jessie D. Trujillo;Natasha Gaudreault;Jayme A. Souza-Neto;Leonardo C. Caserta;Roman M. Pogranichniy;Diego G. Diel;Juergen A. Richt;Igor Morozov - 通讯作者:
Igor Morozov
Crucial for Viral Replication and Virulence Herpesvirus 1-encoded Bicp0 Protein Is the Zinc Ring Finger of Bovine
对病毒复制和毒力至关重要的疱疹病毒 1 编码的 Bicp0 蛋白是牛的锌环指
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jones Leticia;Da Silva;Gail Henderson;Alan Doster;Clinton Kazima Saira;Shafiqul Chowdhury;Natasha Gaudreault - 通讯作者:
Natasha Gaudreault
Natasha Gaudreault的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
- 批准号:82301732
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
- 批准号:81600598
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
- 批准号:71303173
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
- 批准号:
2337045 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
- 批准号:
2416207 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
- 批准号:
2401066 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Fellowship Award
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Fellowship Award














{{item.name}}会员




