RAPID/Collaborative Research: Human-AI Teaming for Big Data Analytics to Enhance Response to the COVID-19 Pandemic
快速/协作研究:人类与人工智能合作进行大数据分析以增强对 COVID-19 大流行的响应
基本信息
- 批准号:2029692
- 负责人:
- 金额:$ 2.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media data can provide important clues and local knowledge that can help emergency managers and responders better comprehend and capture the evolving nature of many disasters. Yet humans alone cannot grasp the vast data generated by social media, so computers are used to assist. Very little is currently known about how to leverage the skills of humans and machines when they work together (human-machine teaming) to identify meaningful patterns in social media data. Therefore, the fundamental issues this Rapid Response Research (RAPID) project seeks to address are 1) understanding the process of real-time decisions that human digital volunteers make when they rapidly convert social media data into structured codes the machine (Artificial Intelligence algorithms) can understand, and 2) using this knowledge to improve human-machine teaming. This project advances the field by revealing the unique abilities that both humans and machines bring when working together to comprehend social media patterns during an evolving disaster. It supports education and diversity by providing research experiences to diverse students, as well as generating data useful for interdisciplinary courses teaching teamwork, social media analysis, and human-machine teaming. Finally, the findings can help emergency managers better train their volunteers who comb through social media using their understanding of the local knowledge and built environment to help machines see new patterns in data. Hence, this project supports NSF's mission to promote the progress of science and to advance the nation's health, prosperity, and welfare by articulating the unique value that both humans and computers bring that can lead to better decisions during disasters. The goal of this research is to better understand the real-time decisions that human annotators make under different environmental constraints, and how those contribute to the learning of Artificial Intelligence (AI) models. Under time constraints and information overload, human decision-making capabilities are limited; yet, humans still have a unique ability to understand the contextual references to the structures in the built environment that machines cannot recognize. For example, the meaning of the tweet, “Memorial is overloaded,” -- which means the hospital, called Memorial, is out of beds for patients —- can be lost on AI systems that lack the knowledge of the built environment. This example demonstrates the value that humans in the loop offer in a human-AI teaming context. This research focuses on capturing the ephemeral data from a variety of social media sources and our two research thrusts include: 1) online observations of Community Emergency Response Team (CERT) volunteers and a manager (a collaborator on this project) using think-aloud and cognitive interviewing strategies to reveal the real-time mental models used to make coding decisions for annotation tasks; and 2) an empirical analysis of different sampling algorithms for active (machine) learning paradigms to develop a typology of machine errors under diverse contexts that affect the quality of human decision making for annotation. This research will generate design guidelines that bridge the gap between the mechanisms used for real-time data processing with AI models and the understanding of context contributed by a human user teaming with the AI models. Using theories of human decision-making combined with knowledge of how AI functions, this project provides a real-time, mid-disaster examination of 1) how humans understand, process, and interpret social media messages, and 2) how to refine AI algorithms to optimize active learning paradigm. This understanding will provide a theoretical framework enabling future research to develop protocols to optimize human-AI teaming by using concepts such as motivation and information theory. This work can help emergency managers conduct better training of their CERT volunteers and other annotators and provide clearer guidelines for how to communicate the unique value that humans bring to the annotation process for AI systems. Both our protocols and developed understanding of how humans interact with AI systems will be helpful for global health organizations, local and state-level disaster decision-makers, as well as provide direction for the vast CERT network in the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体数据可以提供重要线索和当地知识,帮助应急管理人员和响应者更好地理解和捕捉许多灾害不断演变的性质。然而,仅靠人类无法掌握社交媒体产生的大量数据,因此计算机被用来提供帮助。目前,人们对如何利用人类和机器在一起工作时的技能(人机团队)来识别社交媒体数据中有意义的模式知之甚少。因此,这个快速反应研究(Rapid)项目寻求解决的基本问题是:1)理解人类数字志愿者在将社交媒体数据快速转换为机器(人工智能算法)可以理解的结构化代码时做出的实时决策过程;2)利用这些知识来改善人机合作。这个项目通过揭示人类和机器在不断演变的灾难中共同理解社交媒体模式时所带来的独特能力,推动了这一领域的发展。它通过为不同的学生提供研究经验来支持教育和多样性,并为教授团队合作、社交媒体分析和人机合作的跨学科课程生成有用的数据。最后,这些发现可以帮助应急管理人员更好地培训他们的志愿者,这些志愿者利用他们对当地知识和建筑环境的了解来梳理社交媒体,帮助机器在数据中发现新的模式。因此,这个项目支持NSF的使命,通过阐明人类和计算机带来的独特价值来促进科学的进步,促进国家的健康、繁荣和福利,这些价值可以在灾难期间导致更好的决策。本研究的目的是更好地理解人类注释者在不同环境约束下做出的实时决策,以及这些决策如何有助于人工智能(AI)模型的学习。在时间约束和信息过载的情况下,人类的决策能力是有限的;然而,人类仍然有一种独特的能力,可以理解机器无法识别的建筑环境中结构的上下文参考。例如,推文“纪念医院超载了”的意思——这意味着这家名为纪念医院的医院已经没有床位了——可能会在缺乏建筑环境知识的人工智能系统上丢失。这个例子展示了人类在人类- ai团队环境中所提供的价值。本研究的重点是捕获来自各种社交媒体来源的短暂数据,我们的两个研究重点包括:1)社区应急响应小组(CERT)志愿者和经理(该项目的合作者)使用大声思考和认知访谈策略进行在线观察,以揭示用于为注释任务做出编码决策的实时心理模型;2)对主动(机器)学习范式的不同采样算法进行实证分析,以开发不同背景下影响人类注释决策质量的机器错误类型。这项研究将产生设计指南,弥合用于人工智能模型实时数据处理的机制与人类用户与人工智能模型合作所贡献的上下文理解之间的差距。利用人类决策理论与人工智能功能知识相结合,该项目提供了1)人类如何理解、处理和解释社交媒体信息,以及2)如何改进人工智能算法以优化主动学习范式的实时、中期检查。这种理解将提供一个理论框架,使未来的研究能够开发协议,通过使用动机和信息论等概念来优化人类-人工智能团队。这项工作可以帮助应急管理人员更好地培训他们的CERT志愿者和其他注释者,并为如何传达人类为人工智能系统的注释过程带来的独特价值提供更清晰的指导方针。我们的协议和对人类如何与人工智能系统互动的理解将有助于全球卫生组织、地方和州一级的灾难决策者,并为美国庞大的CERT网络提供方向。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online-Computer-Mediated Interviews and Observations: Overcoming Challenges and Establishing Best Practices in a Human-AI Teaming Context
在线计算机介导的访谈和观察:克服挑战并在人类-人工智能团队环境中建立最佳实践
- DOI:10.24251/hicss.2021.353
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Stephens, Keri;Nader, Karim;Harris, Anastazja;Montagnolo, Caroline;Hughes, Amanda;Stevens, Ashley;Wijesuriya, Yasas Pramuditha;Purohit, Hemant
- 通讯作者:Purohit, Hemant
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keri Stephens其他文献
Keri Stephens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keri Stephens', 18)}}的其他基金
SAI-R: Culturally Appropriate Language and Messaging for Influencing End User Behavior During Impending Infrastructure Failures
SAI-R:在即将发生的基础设施故障期间影响最终用户行为的文化上适当的语言和消息传递
- 批准号:
2228706 - 财政年份:2022
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Assessing the Feasibility of Systematizing Human-AI Teaming to Improve Community Resilience
SCC-CIVIC-PG 轨道 B:评估系统化人类与人工智能协作以提高社区复原力的可行性
- 批准号:
2043522 - 财政年份:2021
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: Connecting Artificial Intelligence Literacy and Human-AI Decision Making Outcomes in Organizational Hiring
DRMS 博士论文研究:将人工智能素养与组织招聘中的人类人工智能决策成果联系起来
- 批准号:
2117860 - 财政年份:2021
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
RAPID: The Changing Nature of "Calls" for Help with Hurricane Harvey: Comparing 9-1-1 and Social Media
RAPID:飓风“哈维”求助性质的变化:比较 9-1-1 和社交媒体
- 批准号:
1760453 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant