Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking

合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络

基本信息

  • 批准号:
    2029875
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The next-generation wireless network is expected to be efficient, reliable, secure and spectrum-intelligent to maximize the efficiency of using the wireless spectrum. Dynamic spectrum access and management designs have shown their potential to substantially improve the spectrum utilization efficiency. To achieve the goal of securing efficient spectrum access and utilization, it is common in wireless network systems to collect and use spectrum reports from individual nodes to detect malicious behaviors and/or eliminate attack impacts. The goal of this project is to understand the potential strategies and impacts of a new attack, called adversarial spectrum learning, which aims to learn from the wireless spectrum data and construct specific attack models against spectrum management systems to disrupt the network performance. The project will also provide effective countermeasure against adversarial spectrum learning.The project will focus on studying important research problems associated with adversarial spectrum learning via analytical modeling, comprehensive simulations, and experimental evaluations. Specifically, the research team aims at (i) formulating the adversarial spectrum learning strategies that can be used by malicious attacks to disrupt the spectrum efficiency and evaluating their damaging impacts in varying wireless and network conditions; (ii) detecting adversarial spectrum learning attacks via new non-parametric detection methods; (iii) creating attack prevention and secure management methods for secure and efficient spectrum access in the potential presence of adversarial spectrum learning, and (iv) comprehensively evaluating the efficiency and effectiveness of the proposed detection and prevention strategies. Appropriate elements from the project will also be integrated into educational materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计下一代无线网络有效,可靠,安全和频谱智能,以最大程度地提高使用无线频谱的效率。动态频谱访问和管理设计表明了它们的潜力,可以大大提高光谱利用率。为了实现确保有效频谱访问和利用率的目标,在无线网络系统中很常见地收集和使用各个节点的频谱报告来检测恶意行为和/或消除攻击影响。该项目的目的是了解新攻击的潜在策略和影响,称为对抗频谱学习,该学习旨在从无线频谱数据中学习,并构建针对频谱管理系统的特定攻击模型,以破坏网络性能。该项目还将为对抗性谱学习提供有效的对策。该项目将着重于通过分析建模,综合模拟和实验评估来研究与对抗光谱学习相关的重要研究问题。具体而言,研究小组的目的是(i)制定恶意攻击可以使用的对抗光谱学习策略,以破坏频谱效率并评估其在不同的无线和网络条件下的破坏性影响; (ii)通过新的非参数检测方法检测对抗光谱学习攻击; (iii)创建预防攻击和安全的管理方法,以在潜在的对抗光谱学习的存在下进行安全有效的光谱访问,以及(iv)全面评估拟议的检测和预防策略的效率和有效性。该项目的适当要素还将集成到教育材料中。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MUSTER: Subverting User Selection in MU-MIMO Networks
Adversarial Machine Learning Attacks Against Video Anomaly Detection Systems
IoTGAN: GAN Powered Camouflage Against Machine Learning Based IoT Device Identification
When Attackers Meet AI: Learning-Empowered Attacks in Cooperative Spectrum Sensing
  • DOI:
    10.1109/tmc.2020.3030061
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Luo, Zhengping;Zhao, Shangqing;Sagduyu, Yalin E.
  • 通讯作者:
    Sagduyu, Yalin E.
Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities
  • DOI:
    10.1109/jiot.2021.3091674
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Nassar, Almuthanna;Yilmaz, Yasin
  • 通讯作者:
    Yilmaz, Yasin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhuo Lu其他文献

Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis?
丛枝菌根真菌:对抗破坏性根部半寄生虫甘肃马先蒿的潜在生物防治剂?
  • DOI:
    10.1007/s00572-013-0528-5
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sui Xiao-Lin;Li Ai-Rong;Chen Yan;Guan Kai-Yun;Zhuo Lu;Liu Yan-Yan
  • 通讯作者:
    Liu Yan-Yan
Research on Recommendation System Based on Neural Network and Data Mining
基于神经网络和数据挖掘的推荐系统研究
A Proactive and Deceptive Perspective for Role Detection and Concealment in Wireless Networks
无线网络中角色检测和隐藏的主动和欺骗视角
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Lu;Cliff X. Wang;Mingkui Wei
  • 通讯作者:
    Mingkui Wei
Most Cited Computer Networks Articles
被引用最多的计算机网络文章
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luigi Atzori;Antonio Iera;Giacomo Morabito;Michele Nitti;Wenye Wang;Zhuo Lu;M. Berman;Jeffrey S. Chase;Lawrence Landweber;Akihiro Nakao;Max Ott;Dipankar Raychaudhuri;Robert Ricci;I. Seskar;S. Sicari;A. Rizzardi;L. Grieco;A. Coen
  • 通讯作者:
    A. Coen

Zhuo Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhuo Lu', 18)}}的其他基金

Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320973
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316719
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: A Comprehensive Training Program of AI for 5G and NextG Wireless Network Security
合作研究:SaTC:EDU:5G 和 NextG 无线网络安全人工智能综合培训项目
  • 批准号:
    2321270
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Wireless Networking Designs for Efficiency and Security
职业:数据驱动的无线网络设计以提高效率和安全性
  • 批准号:
    2044516
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: Interdisciplinary Training of Data-Centric Security and Resilience of Cyber-Physical Energy Infrastructures
合作研究:网络培训:试点:以数据为中心的网络物理能源基础设施安全性和弹性的跨学科培训
  • 批准号:
    2017194
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Secure and Reliable Network Tomography in Wireline and Wireless Networks
SaTC:核心:小型:在有线和无线网络中实现安全可靠的网络层析成像
  • 批准号:
    1717969
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1701394
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1464114
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于电卡效应的迅速冷热响应驱动双向形状记忆材料与结构研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于电卡效应的迅速冷热响应驱动双向形状记忆材料与结构研究
  • 批准号:
    52103305
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
国际货币体系现状分析与未来展望:基于货币搜索理论和SWIFT数据的研究
  • 批准号:
    72003209
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
迅速冷却等离子体射流中粒子形成过程的实验研究
  • 批准号:
    11975185
  • 批准年份:
    2019
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目
草莓通过花瓣迅速脱落逃避灰葡萄孢侵染的机制研究
  • 批准号:
    31701882
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332722
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332721
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了