RAPID: Time-Sensitive Human Forest and Model Forecasts for COVID-19 Vaccine and Treatment Trials
RAPID:针对 COVID-19 疫苗和治疗试验的时间敏感型人类森林和模型预测
基本信息
- 批准号:2030015
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate, time-specific predictions are important for planning and decision making during fast-moving pandemics. In particular, whether an effective COVID-19 vaccine will be available in 9, 12, or 18 months is an issue of vital national interest. The main objective of this project is to compare the accuracy of a new method for crowd-based forecasting of time-specific outcomes–such as clinical trial transitions of COVID-19 treatments and vaccines–to that of new machine learning models. The research will examine the relative strengths of crowd and modeling methods and explore combinations of the two in predicting clinical trial results. A forecasting tournament is the project’s main method for human data collection. It starts in 2020 and continues until 2021. People with interest in forecasting and clinical trials are encouraged to sign up for participation, independently of their background. Study participants complete surveys and forecasting training, and will then have the opportunity to make probabilistic forecasts on specific trial events over several months, with regular accuracy feedback. To broaden the impacts of this work, the research team disseminates the aggregate forecasts about clinical trial phase transition of COVID-19 treatments and vaccines through public health information channels. These forecasts, combined with predictive training and accuracy feedback provided to study participants, may aid the coordination of public health and clinical development efforts to overcome the pandemic. The primary research goal of the project is to improve the predictive performance of crowd-based methods, machine models and ensembles of the two. Psychologists have shown that taking the outside view, by examining a prediction problem in context of historical reference classes, improves accuracy. The crowd-based approach, referred to as human forest, combines reference class forecasting and collective intelligence approaches to produce data-driven estimates from a group of forecasters. The time-specific human forest variant employs a survival analysis approach, enabling forecasters to construct reference classes and obtain unbiased historical estimates in the presence of missing data. On the decision science front, the research goals include testing the effects of interfaces featuring historical estimates; understanding the psychology of reference class selection; examining time-scope sensitivity in judgmental forecasting; and assessing the relative importance of subject matter expertise versus general predictive competence. On the machine-modeling front, the research goals include integrating survival-type models into machine learning and improving their performance using bi-level optimization to choose hyper-parameters. The results are released as soon as they become available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速蔓延的流行病期间,准确的、有时间特异性的预测对于规划和决策非常重要。特别是,有效的COVID-19疫苗是否能在9个月、12个月或18个月内上市,是一个事关国家利益的问题。该项目的主要目标是比较基于人群的特定时间结果预测新方法的准确性-例如COVID-19治疗和疫苗的临床试验过渡-与新机器学习模型的准确性。该研究将检查人群和建模方法的相对优势,并探索两者在预测临床试验结果方面的组合。预测比赛是该项目收集人类数据的主要方法。它从2020年开始,一直持续到2021年。鼓励对预测和临床试验感兴趣的人报名参加,无论他们的背景如何。研究参与者完成调查和预测培训,然后将有机会在几个月内对特定试验事件进行概率预测,并定期提供准确性反馈。为了扩大这项工作的影响,研究团队通过公共卫生信息渠道传播有关COVID-19治疗和疫苗临床试验阶段过渡的综合预测。这些预测,结合提供给研究参与者的预测性培训和准确性反馈,可能有助于协调公共卫生和临床开发工作,以克服大流行病。该项目的主要研究目标是提高基于人群的方法,机器模型和两者的集成的预测性能。心理学家已经证明,通过在历史参考类的背景下检查预测问题,采取外部观点可以提高准确性。基于人群的方法,被称为人类森林,结合参考类预测和集体智慧的方法,从一组预测人员中产生数据驱动的估计。特定时间的人类森林变量采用生存分析方法,使预测者能够构建参考类,并在缺失数据的情况下获得无偏的历史估计。在决策科学方面,研究目标包括测试具有历史估计的界面的影响;理解参考类选择的心理学;检查判断预测的时间范围敏感性;以及评估主题专业知识与一般预测能力的相对重要性。在机器建模方面,研究目标包括将生存型模型集成到机器学习中,并使用双层优化来选择超参数以提高其性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sauleh Siddiqui其他文献
Value of Improved Information about Environmental Protection Values: Toward a Benefit–Cost Analysis of Public-Good Valuation Studies
改进环境保护价值信息的价值:公共物品价值评估研究的效益-成本分析
- DOI:
10.1017/bca.2020.10 - 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
J. Strand;Sauleh Siddiqui - 通讯作者:
Sauleh Siddiqui
Cardiac catheterization laboratory inpatient forecast tool: a prospective evaluation
心导管实验室住院患者预测工具:前瞻性评估
- DOI:
10.1093/jamia/ocv124 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthew F. Toerper;Eleni Flanagan;Sauleh Siddiqui;Jeffrey Appelbaum;E. Kasper;S. Levin - 通讯作者:
S. Levin
Evaluating nurse staffing levels in perianesthesia care units using discrete event simulation
使用离散事件模拟评估围麻醉期护理单位的护士人员配备水平
- DOI:
10.1080/24725579.2017.1346729 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Sauleh Siddiqui;E. Morse;S. Levin - 通讯作者:
S. Levin
Dynamic Climate Policy with Both Strategic and Non-strategic Agents: Taxes Versus Quantities
具有战略型和非战略型主体的动态气候政策:税收与数量
- DOI:
10.1007/s10640-015-9901-5 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:3.400
- 作者:
Larry Karp;Sauleh Siddiqui;Jon Strand - 通讯作者:
Jon Strand
Wasted Food and Sustainable Urban Systems: Prioritizing Research Needs
浪费的食物和可持续的城市系统:优先考虑研究需求
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Roni Neff Jhsph;B. E. R. Osu;Sauleh Siddiqui;Ava Richardson - 通讯作者:
Ava Richardson
Sauleh Siddiqui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sauleh Siddiqui', 18)}}的其他基金
Wasted Food and Sustainable Urban Systems: Prioritizing Research Needs
浪费的食物和可持续的城市系统:优先考虑研究需求
- 批准号:
1929791 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Human Forests versus Random Forest Models in Prediction
预测中的人类森林与随机森林模型
- 批准号:
1919333 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
1745375 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developments of near-IR emissive molecular systems by means of high-sensitive time-resolved emission spectroscopy
利用高灵敏度时间分辨发射光谱法开发近红外发射分子系统
- 批准号:
23K04905 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Time-Sensitive Research to Assess the Effects of Reproductive Health Policy on the Health Outcomes of People with Chronic Diseases
评估生殖健康政策对慢性病患者健康结果影响的时间敏感研究
- 批准号:
10768227 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Equipment: MRI: Track 1 Development of CODAS: A System for Concurrent and Multi-Technique Observations of Time-Sensitive Stellar Astrophysics
设备: MRI:CODAS 的轨道 1 开发:对时间敏感的恒星天体物理进行并行和多技术观测的系统
- 批准号:
2320626 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Acquisition and curation of time-sensitive field data from severely flooded neighborhoods in New York City from tropical storm Ophelia for environmental sustainability study
RAPID:从热带风暴奥菲莉亚纽约市严重洪水淹没的社区获取和管理时间敏感的现场数据,用于环境可持续性研究
- 批准号:
2402240 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Optical circuit switched time sensitive network architecture for high-speed passive optical networks and next generation ultra-dynamic and reconfigurable central office environments
用于高速无源光网络和下一代超动态和可重构中心局环境的光电路交换时间敏感网络架构
- 批准号:
10047215 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
COLLABORATIVE AND DIGITAL ANALYSIS OF BIG QUAL DATA IN TIME SENSITIVE CONTEXTS - LISTEN
在时间敏感的背景下对大质量数据进行协作和数字分析 - 听
- 批准号:
MR/W029766/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Specification Mining of Time-sensitive Systems for Safety and Security Applications
用于安全和安保应用的时间敏感系统的规范挖掘
- 批准号:
RGPIN-2018-04454 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design.
协作研究:CPS:中:及时性与可信度:在时间敏感的 CPS 设计中平衡可预测性和安全性。
- 批准号:
2230969 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of highly sensitive real-time monitoring biosensors using asynchronous optical sampling picosecond ultrasonics
利用异步光学采样皮秒超声波开发高灵敏度实时监测生物传感器
- 批准号:
22K18973 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)