Collaborative Research:RAPID:Molecular underpinnings that define volatile compound signature of the lung
合作研究:RAPID:定义肺部挥发性化合物特征的分子基础
基本信息
- 批准号:2031754
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main basic research objectives of this project are to determine the molecular basis for the volatile organic compounds (VOCs) that are released by infected bronchial epithelial cells and to measure them using analytical devices. The fundamental knowledge of the biological mechanisms that generate VOC signals in viral infected lung cells is not currently understood and there is a lack of engineering tools and instrumentation that can capture and analyze the VOCs to provide accurate analytical information. Expected results from this basic research project might provide translational guidance for design of rapid tests that can detect SARS-CoV-2 infection in the US population. Currently, COVID-19 is confirmed using reverse-transcription polymerase chain reaction analysis of nasopharyngeal swabs. Given the current public health emergency and the need to prevent further spread of this highly contagious virus, point of care screening methods are needed that have a high level of confidence, can be mobilized to screen large numbers of people, and can immediately identify persons who require confirmatory testing. One promising approach is to use the pattern of volatile organic compounds that are formed in the body in response to infection for screening purposes. Such a technology would be invaluable in rapid, non-invasive diagnosis of viral infections. The multidisciplinary approach in this project of integrating cell biology, biomedical engineering, and analytical devices will enhance understanding of the cellular mechanisms that regulate lung VOCs and may become the foundation for non-invasive diagnosis of viral infections. This interdisciplinary project will also provide an outstanding educational and training opportunity at the intersection of biology and engineering for K-12, undergraduate, and graduate students.First, the role of important cell signaling pathways on the synthesis of VOCs will be examined. These pathways will be perturbed in the cells after which the cells will be infected with the SARS-CoV-2 virus. The cellular response such as cytokine release and change in transcripts will be determined. Second, the cells will be incorporated in a microfluidic lung-on-a-chip device. This will serve two purposes. One, the organ-chip will provide the cells with a physiological microenvironment which will improve their functional response. Two, the small volume of the microfluidic device will allow pre-concentration and efficient collection of the VOCs. The VOCs will be analyzed using (1) a high-resolution gas chromatograph instrument and (2) an e-nose sensor. The gas chromatograph will be setup with high-resolution dual-column setup with orthogonal column coatings which will provide a comprehensive identification of the VOCs. In parallel, the VOCs will be measured using an e-nose sensor that comprises nanocomposite sensors which change resistivity based on adsorption of VOCs. Machine learning will be used on the VOC signatures to determine an infectious from a non-infectious VOC signature. This platform will uncover new science for regulation of metabolic response which will drive fundamental knowledge of biology and development of advanced instrumentation. This RAPID award is made by the Cellular Dynamics and Function Program in the Division of Molecular and Cellular Biosciences, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要基础研究目标是确定受感染的支气管上皮细胞释放的挥发性有机化合物(VOC)的分子基础,并使用分析设备对其进行测量。在病毒感染的肺细胞中产生VOC信号的生物机制的基本知识目前还不清楚,并且缺乏可以捕获和分析VOC以提供准确分析信息的工程工具和仪器。该基础研究项目的预期结果可能为设计可检测美国人群中SARS-CoV-2感染的快速检测方法提供转化指导。目前,COVID-19是通过对鼻咽拭子进行逆转录聚合酶链反应分析来确认的。鉴于目前的公共卫生紧急情况和防止这种高传染性病毒进一步传播的必要性,需要有高置信度的护理点筛查方法,可以动员起来筛查大量人群,并可以立即识别需要确认检测的人。一种有希望的方法是使用在体内响应感染而形成的挥发性有机化合物的模式用于筛查目的。这种技术在快速、非侵入性诊断病毒感染方面将是非常宝贵的。该项目中整合细胞生物学,生物医学工程和分析设备的多学科方法将增强对调节肺部VOC的细胞机制的理解,并可能成为病毒感染非侵入性诊断的基础。该跨学科项目还将为K-12、本科生和研究生提供生物学和工程学交叉领域的优秀教育和培训机会。首先,将研究重要细胞信号通路对VOCs合成的作用。这些途径将在细胞中受到干扰,之后细胞将被SARS-CoV-2病毒感染。将测定细胞应答,如细胞因子释放和转录物变化。第二,将细胞并入微流体肺芯片装置中。这样做有两个目的。首先,器官芯片将为细胞提供一个生理微环境,这将改善它们的功能反应。第二,微流体装置的小体积将允许预浓缩和有效收集VOC。将使用(1)高分辨率气相色谱仪和(2)电子鼻传感器分析VOC。气相色谱仪将采用高分辨率双柱设置,并采用正交柱涂层,可全面识别VOC。同时,将使用电子鼻传感器测量VOC,该电子鼻传感器包括纳米复合材料传感器,该纳米复合材料传感器基于VOC的吸附而改变电阻率。机器学习将用于VOC特征,以确定传染性和非传染性VOC特征。该平台将揭示调节代谢反应的新科学,这将推动生物学的基础知识和先进仪器的发展。该RAPID奖由分子和细胞生物科学部的细胞动力学和功能计划颁发,使用冠状病毒援助,救济和经济安全(CARES)法案的资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Keshavarzian其他文献
Role of CGMP signal pathway in oxidant-induced disruption of actin cytoskeleton and of intestinal barrier permeability in human epithelial cells
- DOI:
10.1016/s0016-5085(00)84931-8 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:
- 作者:
Sri Komanduri;Ali Banan;Yang Zhang;Ali Keshavarzian - 通讯作者:
Ali Keshavarzian
1055 - Prebiotic Treatment Corrects Composition of Gut Microbiota, Promotes Scfa Production, and Suppresses Colon Carcinogenesis
- DOI:
10.1016/s0016-5085(18)31070-9 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:
- 作者:
Faraz Bishehsari;Phillip Engen;Nailliw Z. Preite;Yunus E. Tunçil;Ankur Naqib;Maliha Shaikh;Marco Rossi;Sherry Wilber;Stefan Green;Bruce R. Hamaker;Khashayarsha Khazaie;Robin M. Voigt;Christopher B. Forsyth;Ali Keshavarzian - 通讯作者:
Ali Keshavarzian
Protein movement between membrane domains: the Epidermal Growth Factor Receptor (EGFR) signaling cascade
- DOI:
10.1016/j.bpj.2008.12.3572 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Artem G. Ayuyan;Christopher B. Forsyth;Lijuan Zhang;Ali Keshavarzian;Fredric S. Cohen - 通讯作者:
Fredric S. Cohen
Light-dark shift promotes colon carcinogenesis through accelerated colon aging
昼夜节律变化通过加速结肠衰老促进结肠癌的发生
- DOI:
10.1016/j.isci.2024.111560 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:4.100
- 作者:
Deepak Sharma;Phillip A. Engen;Abu Osman;Darbaz Adnan;Maliha Shaikh;Mostafa K. Abdel-Reheem;Ankur Naqib;Stefan J. Green;Bruce Hamaker;Christopher B. Forsyth;Lin Cheng;Ali Keshavarzian;Khashayarsha Khazaie;Faraz Bishehsari - 通讯作者:
Faraz Bishehsari
Tu1258 CIRCADIAN MISALIGNMENT IN INFLAMMATORY BOWEL DISEASE IS ASSOCIATED WITH A MORE AGGRESIVE DISEASE PHENOTYPE, INCREASED INTESTINAL PERMEABILTY, AND DYSBIOSIS
- DOI:
10.1016/s0016-5085(20)33268-6 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Garth Swanson;Nicole Kochman;Vijit Chouhan;Jaimin Amin;Wesley Yim;Maliha Shaikh;Erika Carrasquilla;Phillip Engen;Ankur Naqib;Ali Keshavarzian - 通讯作者:
Ali Keshavarzian
Ali Keshavarzian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant