RAPID: Estimating the Reciprocal Relationship between COVID-19 Infections of Prisoners and Staff and Infections in the Surrounding Communities
RAPID:估计囚犯和工作人员的 COVID-19 感染与周围社区感染之间的相互关系
基本信息
- 批准号:2032747
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Controlling COVID-19 infections in prison is a critical part of “flattening the curve.” Prisons are high transmission and risk settings for the spread of infectious disease due to crowding, communal dining, and difficulty with sanitation. Prison staff may contribute to disease transmission between the local community and prisoners because staffers exit the prison and enter the community each shift (and vice-versa). This creates a bidirectional pathway for spreading the disease. Prisons, as well as other high density accommodations like nursing homes or cruise ships, are in immediate need of information concerning the spread of COVID-19. In particular, strategies are needed for halting or slowing the spread of COVID-19 in these settings. Prisons are a particularly difficult setting for such evaluative efforts because the current crisis leaves stakeholders little time to assess whether virus suppression strategies and their associated policies are working – creating a devastating information gap. Thus, quickly understanding the spread of COVID-19 both among people and across geographies, the effectiveness of policies and strategies for flattening the curve, as well as the return on investments (ROI) is critical for prisons to minimize and contain future outbreaks of COVID-19. This project will deepen our understanding of the reciprocal relationship between COVID-19 infections among prisoners, correctional staff and the communities where prisons are located. Findings will be useful to communities and congregate facility officials as they develop policies to manage these reciprocal infections in congregate settings, thus contributing to U. S. health and well-being. Prisons are at high risk for the spread of COVID-19, due to their communal settings, and the movement of staff between prisons and communities on a daily basis. To assess the dynamics of these risks, this project will develop a data driven dynamical disease model focusing on the temporal patterns in COVID-19 infections in the inter-connected prison/staff/community populations, and assess the relative efficacy of potential best practices for infection control, either aimed at the prisoner population and/or the staff population. In addition, the project will examine the reciprocal relationship between infections and deaths in prisons among prisoners and staff and the communities surrounding the prison from a geographic perspective. An ability to model the geospatial intricacies and the geodemographic impacts of this process is critical to developing a deeper understanding of how COVID-19 interacts with mobile (e.g., staff) and/or immobile (e.g., prisoner) populations. Specifically, the project will use geocomputational approaches for modeling the spatial envelopes of potential interactions between prison staff and their local residential communities. This includes the development of high-resolution spatiotemporal catchment areas to/from each federal prison in the United States. Finally, using return-on-investment (ROI) analysis, the project will illuminate the potential economic implications of COVID-19 infection control interventions targeting justice-involved populations. The anticipated insights from the ROI analysis include the identification of the key ROI drivers and the magnitude of impact required for the accrual of net savings to relevant decision-making agencies. Findings from the project will inform sociological theories regarding incarceration and literatures regarding reciprocal relationships between work and community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
控制监狱中的COVID-19感染是“平坦曲线”的关键部分。监狱由于拥挤、公共用餐和卫生条件困难,是传染病传播的高传播和高风险环境。监狱工作人员可能助长当地社区和囚犯之间的疾病传播,因为工作人员每轮班离开监狱并进入社区(反之亦然)。这为疾病的传播创造了一个双向途径。监狱以及养老院或游轮等其他高密度住宿场所迫切需要有关COVID-19传播的信息。特别是需要制定战略来阻止或减缓COVID-19在这些环境中的传播。监狱是这种评估工作特别困难的环境,因为目前的危机使利益攸关方几乎没有时间评估病毒抑制战略及其相关政策是否奏效——造成了毁灭性的信息差距。因此,快速了解COVID-19在人群中和跨地域的传播情况、使曲线扁平化的政策和战略的有效性以及投资回报率(ROI)对于监狱最大限度地减少和控制未来的COVID-19疫情至关重要。该项目将加深我们对囚犯、惩教人员和监狱所在社区之间COVID-19感染相互关系的理解。研究结果将对社区和聚集设施官员有用,因为他们制定了管理聚集环境中这些互惠感染的政策,从而为美国的健康和福祉做出贡献。由于监狱的公共环境以及工作人员每天在监狱和社区之间流动,监狱面临着COVID-19传播的高风险。为了评估这些风险的动态,该项目将开发一个数据驱动的动态疾病模型,重点关注相互关联的监狱/工作人员/社区人群中COVID-19感染的时间模式,并评估针对囚犯群体和/或工作人员群体的潜在感染控制最佳做法的相对功效。此外,该项目将从地理角度审查监狱中囚犯和工作人员与监狱周围社区之间的感染和死亡之间的相互关系。对这一过程的地理空间复杂性和地理人口影响进行建模的能力,对于深入了解COVID-19如何与流动人口(如工作人员)和/或不流动人口(如囚犯)相互作用至关重要。具体而言,该项目将使用地理计算方法对监狱工作人员与其当地居民社区之间潜在相互作用的空间包围圈进行建模。这包括开发进出美国各联邦监狱的高分辨率时空集水区。最后,通过投资回报率(ROI)分析,该项目将阐明针对司法相关人群的COVID-19感染控制干预措施的潜在经济影响。ROI分析的预期见解包括确定关键的ROI驱动因素和相关决策机构净节省累积所需的影响程度。该项目的研究结果将为有关监禁的社会学理论和有关工作与社区相互关系的文献提供信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Is There a Temporal Relationship between COVID-19 Infections among Prison Staff, Incarcerated Persons and the Larger Community in the United States?
- DOI:10.3390/ijerph18136873
- 发表时间:2021-06-26
- 期刊:
- 影响因子:0
- 作者:Wallace D;Eason JM;Walker J;Towers S;Grubesic TH;Nelson JR
- 通讯作者:Nelson JR
The 2020 Coronavirus Pandemic and Its Corresponding Data Boon: Issues With Pandemic-Related Data From Criminal Justice Organizations
- DOI:10.1177/10439862211027993
- 发表时间:2021-07-01
- 期刊:
- 影响因子:2
- 作者:Wallace, Danielle;Walker, Jason;Grubesic, Tony H.
- 通讯作者:Grubesic, Tony H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Wallace其他文献
Delineating race-specific driving patterns for identifying racial segregation
描绘特定种族的驾驶模式以识别种族隔离
- DOI:
10.1016/j.trd.2023.103769 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yirong Zhou;R. Wei;X. Liu;Danielle Wallace;T. Grubesic - 通讯作者:
T. Grubesic
Discharge Instructions - Who, What, When and Where: The Development of a Discharge Liaison Role to Improve the Patient Experience and Discharge Planning Process Post-operatively
- DOI:
10.1016/j.jopan.2021.06.065 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Primary Investigator: Marlo Justesen;Co-Investigators: Elise Pearson;Danielle Wallace - 通讯作者:
Danielle Wallace
A data-driven framework for agent-based modeling of vehicular travel using publicly available data
- DOI:
10.1016/j.compenvurbsys.2024.102095 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Yirong Zhou;Xiaoyue Cathy Liu;Bingkun Chen;Tony Grubesic;Ran Wei;Danielle Wallace - 通讯作者:
Danielle Wallace
Assessing the Impact of Cannabis Decriminalization on Racial Disparities in Chicago’s Cannabis Possession Arrests
评估大麻非刑事化对芝加哥大麻持有逮捕中种族差异的影响
- DOI:
10.1177/23326492241232322 - 发表时间:
2024 - 期刊:
- 影响因子:3
- 作者:
Akwasi Owusu;Danielle Wallace;Shytierra Gaston;John Eason;Eric Sevell - 通讯作者:
Eric Sevell
Patterns of Care and Impact of Initial Treatment in Peripheral T-Cell Lymphoma: Outcome Analysis from the Lymphoma Epidemiology of Outcomes (LEO) and Molecular Epidemiology Resource (MER) Prospective Cohort Study
- DOI:
10.1182/blood-2023-180318 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Jia Ruan;Zhengming Chen;Melissa C. Larson;N. Nora Bennani;Danielle Wallace;Pamela B. Allen;David L Jaye;Jonathon B. Cohen;Luis Enrique Malpica Castillo;Francisco Vega;Giorgio Inghirami;Eric Mou;Carla Casulo;Neha Mehta-Shah;Peter Martin;Matthew J. Maurer;Brad S. Kahl;Izidore S. Lossos;James R. Cerhan;Christopher R. Flowers - 通讯作者:
Christopher R. Flowers
Danielle Wallace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Wallace', 18)}}的其他基金
Constructing Race-Specific Driving Patterns to Address Racial Profiling
构建特定于种族的驾驶模式以解决种族分析问题
- 批准号:
2051226 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
相似海外基金
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
- 批准号:
MR/Z503769/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Research Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
- 批准号:
2345330 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Extreme weather events caused by climate change: Estimating the prevalence of at-risk workers
气候变化引起的极端天气事件:估计高危工人的患病率
- 批准号:
485323 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Operating Grants
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
- 批准号:
23K17776 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of method for estimating post-mortem interval using cadaver microbiome analysis
开发利用尸体微生物组分析估计死后间隔的方法
- 批准号:
23K16375 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of a Highly Accurate Direct Observation Method for Estimating Dissolved Gas Loads from Land to Coastal Oceans via Submarine Groundwater Discharge
建立高精度直接观测方法来估算海底地下水排放从陆地到沿海海洋的溶解气体负荷
- 批准号:
23K17046 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Marrying into a Tax Bracket: A New Approach to Estimating Tax Elasticities
嫁入税级:估计税收弹性的新方法
- 批准号:
2858465 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Studentship
Methods for Estimating Disease Burden of Seasonal Influenza
估计季节性流感疾病负担的方法
- 批准号:
10682150 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Serocalculator: Estimating Incidence Rates from Serological Data
血清计算器:根据血清学数据估算发病率
- 批准号:
10658478 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Estimating Mediation and Moderation Effects in HIV Care Continuum Intervention Trials for People who Use Drugs
估计吸毒者艾滋病毒护理连续干预试验中的中介和调节效应
- 批准号:
10676648 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别: