CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
基本信息
- 批准号:2033671
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Federated learning (FL) is an emerging distributed machine learning paradigm that has many attractive properties. Despite the early studies that have demonstrated the potential of jointly optimizing communication and computation, existing designs are not tailored to the unique characteristics of FL. This project aims at developing a novel and rigorous resource allocation framework for wireless FL, which we term resource rationing to emphasize balancing resources over time so that the long-term impact to the final learning outcome is explicitly captured. Resource rationing is built on a rigorous theoretical foundation and guides the algorithmic development that solves specific resource allocation problems in both physical and Media Access Control (MAC) layers. Federated learning is an emerging new application for wireless communications, and this project has potential to advance the technology development of this new use case. Meanwhile, the theoretical foundation, algorithms, and validation will broadly advance the state of the art in machine learning, communication theory, and wireless networking. Developing such practical and impactful technology would also help maintain the leadership of the United States in wireless technologies as well as keep the pipeline to supply high-quality, well-trained, and innovative engineers.The project pursues synergistic activities for the successful design and implementation of resource rationing for wireless FL. Novel convergence analysis of FL with varying resource in each learning round is carried out, which establishes the general later-is-better principle. Guided by the theoretical foundation, the project further builds a comprehensive algorithmic framework for specific resource rationing designs, ranging from physical layer bit loading and adaptive coding and modulation to the MAC layer client selection, bandwidth allocation, and power control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习(FL)是一种新兴的分布式机器学习范式,具有许多有吸引力的特性。尽管早期的研究表明了共同优化沟通和计算的潜力,但现有设计并不是针对FL的独特特征量身定制的。该项目旨在为无线FL开发一个新颖而严格的资源分配框架,我们将资源配给以随着时间的推移而强调平衡资源,以便明确捕获对最终学习结果的长期影响。资源配给建立在严格的理论基础上,并指导算法开发,该算法开发解决了物理和媒体访问控制(MAC)层中特定资源分配问题。 Federated Learning是一个新兴的无线通信应用程序,该项目有潜力推进这种新用例的技术开发。同时,理论基础,算法和验证将在机器学习,通信理论和无线网络中广泛推进最新技术。开发这种实用和有影响力的技术还将有助于维持美国在无线技术方面的领导,并保持管道以提供高质量,培训和创新的工程师。该项目从事协同活动,以成功设计和实施用于无线无线FL的资源侵害。在每个学习回合中,对FL的新型收敛分析进行了不同的资源,从而确立了一般的后期原理。在理论基础的指导下,该项目进一步建立了针对特定资源配给设计的全面算法框架,从物理层的位加载和自适应编码和调制到MAC层客户的选择,带宽分配以及权力控制。该奖项反映了NSF的法定任务,并通过评估构成了构成群体的范围,并反映了该奖项的范围。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Learning over Noisy Channels
- DOI:10.1109/icc42927.2021.9500833
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Xizixiang Wei;Cong Shen
- 通讯作者:Xizixiang Wei;Cong Shen
Federated Learning via Indirect Server-Client Communications
- DOI:10.1109/ciss56502.2023.10089783
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Jieming Bian;Cong Shen;Jie Xu
- 通讯作者:Jieming Bian;Cong Shen;Jie Xu
FLORAS: Differentially Private Wireless Federated Learning Using Orthogonal Sequences
- DOI:10.1109/icc45041.2023.10278611
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xizixiang Wei;Tianhao Wang;Ruiquan Huang;Cong Shen;Jing Yang;H. Poor;Charles L. Brown
- 通讯作者:Xizixiang Wei;Tianhao Wang;Ruiquan Huang;Cong Shen;Jing Yang;H. Poor;Charles L. Brown
Federated Multi-armed Bandits with Personalization
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Cong Shen;Jing Yang
- 通讯作者:Chengshuai Shi;Cong Shen;Jing Yang
Federated Multi-Armed Bandits
- DOI:10.1609/aaai.v35i11.17156
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Cong Shen
- 通讯作者:Chengshuai Shi;Cong Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Shen其他文献
Silence is gold: Strategic small cell interference management using tokens
沉默是金:使用代币进行战略性小基站干扰管理
- DOI:
10.1109/glocom.2014.7037493 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Cong Shen;J. Xu;M. Schaar - 通讯作者:
M. Schaar
Exponential Stability Conditions for Swithched Linear Stochastic Systems with Time-Varying Delay
时变时滞切换线性随机系统的指数稳定性条件
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.6
- 作者:
Cong Shen;Liping Yin - 通讯作者:
Liping Yin
WLC42-3: MIMO-OFDM Beamforming for Improved Channel Estimation
WLC42-3:用于改进信道估计的 MIMO-OFDM 波束成形
- DOI:
10.1109/glocom.2006.861 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Cong Shen;M. Fitz - 通讯作者:
M. Fitz
Cognitive Function and Quality of Life in Parkinson’s Disease: A Cross-Sectional Study
帕金森病的认知功能和生活质量:横断面研究
- DOI:
10.3233/jpd-202097 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yilin Tang;Xiaoniu Liang;Linlin Han;Fang Peng;Bo Shen;Huiling Yu;Yan Shen;Cong Shen;Jintai Yu;Jian Wang - 通讯作者:
Jian Wang
A Low-Delay Low-Complexity EKF Design for Joint Channel and CFO Estimation in Multi-User Cognitive Communications
多用户认知通信中联合信道和 CFO 估计的低延迟低复杂度 EKF 设计
- DOI:
10.1109/glocom.2011.6133846 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Pengkai Zhao;Cong Shen - 通讯作者:
Cong Shen
Cong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Shen', 18)}}的其他基金
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
- 批准号:
2143559 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2029978 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant