CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
基本信息
- 批准号:2033671
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Federated learning (FL) is an emerging distributed machine learning paradigm that has many attractive properties. Despite the early studies that have demonstrated the potential of jointly optimizing communication and computation, existing designs are not tailored to the unique characteristics of FL. This project aims at developing a novel and rigorous resource allocation framework for wireless FL, which we term resource rationing to emphasize balancing resources over time so that the long-term impact to the final learning outcome is explicitly captured. Resource rationing is built on a rigorous theoretical foundation and guides the algorithmic development that solves specific resource allocation problems in both physical and Media Access Control (MAC) layers. Federated learning is an emerging new application for wireless communications, and this project has potential to advance the technology development of this new use case. Meanwhile, the theoretical foundation, algorithms, and validation will broadly advance the state of the art in machine learning, communication theory, and wireless networking. Developing such practical and impactful technology would also help maintain the leadership of the United States in wireless technologies as well as keep the pipeline to supply high-quality, well-trained, and innovative engineers.The project pursues synergistic activities for the successful design and implementation of resource rationing for wireless FL. Novel convergence analysis of FL with varying resource in each learning round is carried out, which establishes the general later-is-better principle. Guided by the theoretical foundation, the project further builds a comprehensive algorithmic framework for specific resource rationing designs, ranging from physical layer bit loading and adaptive coding and modulation to the MAC layer client selection, bandwidth allocation, and power control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习(FL)是一种新兴的分布式机器学习范式,具有许多吸引人的特性。尽管早期的研究已经证明了联合优化通信和计算的潜力,现有的设计是不适合FL的独特特性。该项目旨在开发一种新的和严格的无线FL的资源分配框架,我们长期的资源配给,强调随着时间的推移平衡资源,使最终的学习成果的长期影响被明确捕获。资源配给建立在严格的理论基础上,并指导解决物理和媒体访问控制(MAC)层中特定资源分配问题的算法开发。联邦学习是无线通信的一个新兴应用,该项目有可能推动这一新用例的技术开发。同时,理论基础、算法和验证将广泛推进机器学习、通信理论和无线网络的最新发展。开发这种实用和有影响力的技术也将有助于保持美国在无线技术方面的领导地位,并保持供应高质量,训练有素和创新的工程师的管道。该项目追求协同活动,以成功设计和实施无线FL的资源配给。在每个学习回合中,对FL进行不同资源的新收敛分析,这就确立了一般的“后来者更好”原则。在理论基础的指导下,该项目进一步构建了一个全面的算法框架,用于特定的资源配给设计,从物理层比特加载和自适应编码和调制到MAC层客户端选择,带宽分配,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Learning over Noisy Channels
- DOI:10.1109/icc42927.2021.9500833
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Xizixiang Wei;Cong Shen
- 通讯作者:Xizixiang Wei;Cong Shen
FLORAS: Differentially Private Wireless Federated Learning Using Orthogonal Sequences
- DOI:10.1109/icc45041.2023.10278611
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xizixiang Wei;Tianhao Wang;Ruiquan Huang;Cong Shen;Jing Yang;H. Poor;Charles L. Brown
- 通讯作者:Xizixiang Wei;Tianhao Wang;Ruiquan Huang;Cong Shen;Jing Yang;H. Poor;Charles L. Brown
Federated Multi-armed Bandits with Personalization
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Cong Shen;Jing Yang
- 通讯作者:Chengshuai Shi;Cong Shen;Jing Yang
Federated Learning via Indirect Server-Client Communications
- DOI:10.1109/ciss56502.2023.10089783
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Jieming Bian;Cong Shen;Jie Xu
- 通讯作者:Jieming Bian;Cong Shen;Jie Xu
Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game
- DOI:10.48550/arxiv.2205.15512
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Wei Xiong;Han Zhong;Chengshuai Shi;Cong Shen;Liwei Wang;T. Zhang
- 通讯作者:Wei Xiong;Han Zhong;Chengshuai Shi;Cong Shen;Liwei Wang;T. Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Shen其他文献
Stability analysis for interval time-varying delay systems based on time-varying bound integral method
基于时变界限积分法的区间时变时滞系统稳定性分析
- DOI:
10.1016/j.jfranklin.2014.07.015 - 发表时间:
2014-10 - 期刊:
- 影响因子:0
- 作者:
Qian Wei;Li Tao;Cong Shen;Fei Shumin - 通讯作者:
Fei Shumin
Stochastic Linear Contextual Bandits with Diverse Contexts
具有不同上下文的随机线性上下文强盗
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Weiqiang Wu;Jing Yang;Cong Shen - 通讯作者:
Cong Shen
Output-feedback stabilization control of systems with random switchings and state jumps
具有随机切换和状态跳跃的系统的输出反馈稳定控制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Qian Wei;Cong Shen;Zheng Zheng - 通讯作者:
Zheng Zheng
Multi-relation graph embedding for predicting miRNA-target gene interactions by integrating gene sequence information
通过整合基因序列信息预测 miRNA-靶基因相互作用的多关系图嵌入
- DOI:
10.1109/jbhi.2022.3168008 - 发表时间:
2022 - 期刊:
- 影响因子:7.7
- 作者:
Jiawei Luo;Wenjue Ouyang;Cong Shen;Jie Cai - 通讯作者:
Jie Cai
On the Design of Modern Multilevel Coded Modulation for Unequal Error Protection
论现代多级编码调制的不等差错保护设计
- DOI:
10.1109/icc.2008.263 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Cong Shen;M. Fitz - 通讯作者:
M. Fitz
Cong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Shen', 18)}}的其他基金
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
- 批准号:
2143559 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2029978 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319781 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242700 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245608 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242701 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
- 批准号:
2236565 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant