Collaborative Research: RAPID: Behavioral Epidemic Modeling For COVID-19 Containment
合作研究:RAPID:遏制 COVID-19 的行为流行病模型
基本信息
- 批准号:2034003
- 负责人:
- 金额:$ 3.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People tend to change and adapt their behavior during epidemics. Historically, behavioral adaptation has played a central role in the progression of epidemics. In some cases, a change in behavior may suppress an epidemic (e.g., through fear-driven flight or self-isolation) while in other cases, a change may intensify the spread of a disease (e.g., through vaccine refusal or premature cessation of distancing). People’s future behavior during the current COVID-19 epidemic will determine how well we cope with two central threats. First is the immediate threat of successive epidemic waves due to the premature lifting of social distancing guidelines, and the abandonment of social distancing by a large percentage of the population. The second threat is that the disease will rebound even after a vaccine is available. This has occurred before (e.g., measles) and could occur with COVID-19 if a sufficient fraction of the population refuses vaccine out of fear. This research will develop a new model to predict human behavior using publicly available social media data to address a known weakness in most current models. The new model, source code, data, parameters, assumptions, and methods will all be completely open and publicly available, ensuring the replicability of all results. This project will also deliver an interactive version of the model for use by policymakers, government agencies, and educators. Other broader impacts are training opportunities for a graduate student. Most current models that are used to forecast the course of epidemics may provide incomplete results because they do not take into account changes in peoples’ behavior (human behavioral adaptation). In the proposed research, human behavior will be included within a new model using data taken from social media platforms such as Twitter and Facebook. The data will allow calibration of the model and replicate the entire New York State epidemic to date. Machine Learning approaches will be applied to determine optimal messages and interventions over a wide range of scenarios and control strategies. This development requires a unique interdisciplinary team spanning social science, infectious disease modeling, biostatistics, social media data mining, and Machine Learning.This RAPID award is made by the Ecology and Evolution of Infectious Diseases Program in the Division of Environmental Biology, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在流行病期间,人们往往会改变和适应自己的行为。从历史上看,行为适应在流行病的发展中发挥了核心作用。在某些情况下,行为的改变可以抑制流行病(例如,通过恐惧驱动的逃离或自我隔离),而在其他情况下,变化可能加剧疾病的传播(例如,通过疫苗拒绝或过早停止距离)。人们在当前COVID-19疫情期间的未来行为将决定我们如何科普两个核心威胁。首先是由于过早取消社交距离准则,以及大部分人口放弃社交距离,连续流行病浪潮的直接威胁。第二个威胁是,即使有了疫苗,这种疾病也会反弹。这在以前发生过(例如,麻疹),如果有足够比例的人口因恐惧而拒绝接种疫苗,可能会发生COVID-19。这项研究将开发一种新的模型,利用公开的社交媒体数据来预测人类行为,以解决当前大多数模型中的一个已知弱点。 新模型、源代码、数据、参数、假设和方法都将完全开放和公开,确保所有结果的可复制性。该项目还将提供该模型的互动版本,供决策者、政府机构和教育工作者使用。其他更广泛的影响是研究生的培训机会。大多数用于预测流行病进程的当前模型可能会提供不完整的结果,因为它们没有考虑到人们行为的变化(人类行为适应)。 在拟议的研究中,人类行为将被纳入一个新的模型,使用从Twitter和Facebook等社交媒体平台获取的数据。这些数据将允许校准模型并复制迄今为止整个纽约州的流行情况。机器学习方法将被应用于确定各种场景和控制策略的最佳信息和干预措施。这一发展需要一个独特的跨学科团队,跨越社会科学,传染病建模,生物统计学,社交媒体数据挖掘和机器学习。这个RAPID奖是由环境生物学部门的传染病生态学和进化计划,使用冠状病毒援助,救济,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerardo Chowell-Puente其他文献
Gerardo Chowell-Puente的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerardo Chowell-Puente', 18)}}的其他基金
Collaborative Research: RAPID: RTEM: Rapid Testing as Multi-fidelity Data Collection for Epidemic Modeling
合作研究:RAPID:RTEM:快速测试作为流行病建模的多保真度数据收集
- 批准号:
2026797 - 财政年份:2020
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: DataStorm: A Data Enabled System for End-to-End Disaster Planning and Response
CDS
- 批准号:
1610429 - 财政年份:2016
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant














{{item.name}}会员




