Exploring Particle Dispersion and Charge Percolation in Suspension Electrodes: Bridging Electrochemical Performance and Rheology
探索悬浮电极中的颗粒分散和电荷渗透:桥接电化学性能和流变学
基本信息
- 批准号:2034108
- 负责人:
- 金额:$ 38.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Growing concerns over sustainable energy sources and access to clean water have prompted the need for development of efficient and cost-effective technologies that can be readily scaled to meet the increasing demand. Among the recent advances, the concept of flowable suspension electrodes has emerged as a highly promising approach for addressing the challenges in large-scale energy storage and water purification. Suspension electrodes can be broadly defined as a slurry of electrochemically active materials suspended in a liquid electrolyte. Performance of these electrodes is governed by the flow conditions and the system design, making them significantly more challenging to characterize than conventional electrodes. This project is designed to address some of the open questions related to the electrochemical performance and the flow characteristics of these electrodes to help determine optimal engineering design choices for this new class of electrodes. Accordingly, a number of studies will be conducted to explore and reveal the complex relation between the flowability and the electrochemical performance of these electrodes. The resulting discoveries and new knowledge gained from these studies will benefit research on emerging energy storage and water treatment technologies and help develop new scalable technologies that utilize this new class of electrodes. This project will also offer significant opportunities to extend and amplify the impact of the research to a larger society. It will target energy-themed activities and help enhance the education of a broad range of students, attracting young talented people to STEM careers in the areas of strategic national interests.Suspension electrodes rely on volume-spanning networks of conducting particles to effectively facilitate charge transport and minimize ohmic losses. Such particle networks are expected to have a minimum impact on the viscosity of the electrode so that the energy losses incurred by pumping can be minimized during operation. This trade-off between the electrical conductivity and the viscosity imposes critical design limitations; therefore, the most rational path forward to improve the performance metrics of these flowable electrodes is to explore ways to design suspensions that have the desired electrochemical properties with matching rheological characteristics. Motivated by this need, the objective of this project is to establish a new physics-based framework for rational design of high-performance suspension electrodes with optimized particle networks that enable enhanced flowability and facile charge transport. Toward this goal, a key objective of this work will be to quantify the critical tunable parameters that govern particle interactions, particle clustering, and the evolution of percolation networks for charge transport in these electrodes. This understanding will enable direct control of the particle networks and offer a certain level of tunability of the key properties to arrive at the optimal engineering design choices. A set of hypothesis-driven studies will be conducted to provide new insights into materials, processing, particle interaction, charge transfer, and percolation processes in these electrodes. It is anticipated that these studies will help expand the knowledge in colloidal science by investigating a unique class of suspensions for a broader research community. Findings of this study are also expected to aid in the design of functional inks for a variety of applications. The resulting discoveries and new knowledge gained from this work will also benefit research on emerging water desalination technologies and help formulate optimized suspensions for these applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对可持续能源和获得清洁水的日益关注,促使人们需要开发高效和具有成本效益的技术,这些技术可以随时扩大规模,以满足日益增长的需求。在最近的进展中,可流动悬浮电极的概念已经成为解决大规模储能和水净化挑战的非常有前途的方法。悬浮电极可以广义地定义为悬浮在液体电解质中的电化学活性材料的浆料。这些电极的性能取决于流动条件和系统设计,这使得它们比传统电极更具挑战性。该项目旨在解决与这些电极的电化学性能和流动特性相关的一些未决问题,以帮助确定这类新电极的最佳工程设计选择。因此,将进行许多研究以探索和揭示这些电极的流动性和电化学性能之间的复杂关系。从这些研究中获得的发现和新知识将有利于新兴储能和水处理技术的研究,并有助于开发利用这种新型电极的新的可扩展技术。该项目还将提供重要的机会,将研究的影响扩大到更大的社会。它将以能源为主题的活动为目标,帮助加强对广大学生的教育,吸引年轻有才华的人从事国家战略利益领域的STEM职业。悬浮电极依靠导电粒子的体积跨越网络,有效促进电荷传输并最大限度地减少欧姆损失。预期这种颗粒网络对电极的粘度具有最小的影响,使得在操作期间由泵送引起的能量损失可以最小化。电导率和粘度之间的这种权衡强加了关键的设计限制;因此,改进这些可流动电极的性能指标的最合理的途径是探索设计具有所需电化学性质和匹配流变特性的悬浮液的方法。出于这一需求,该项目的目标是建立一个新的基于物理的框架,用于合理设计具有优化颗粒网络的高性能悬浮电极,从而增强流动性和易于电荷传输。为了实现这一目标,这项工作的一个关键目标将是量化的关键可调参数,这些参数控制粒子相互作用,粒子聚集,并在这些电极中的电荷传输的渗滤网络的演变。这种理解将使粒子网络的直接控制,并提供一定程度的关键属性的可调性,以达到最佳的工程设计选择。 将进行一组假设驱动的研究,以提供新的见解,材料,加工,粒子相互作用,电荷转移,以及在这些电极的渗滤过程。预计这些研究将有助于通过为更广泛的研究社区调查一类独特的悬浮液来扩展胶体科学的知识。这项研究的结果也有望有助于设计用于各种应用的功能性油墨。从这项工作中获得的发现和新知识也将有利于新兴水淡化技术的研究,并有助于为这些应用制定优化的悬浮液。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MXene-based suspension electrode with improved energy density for electrochemical flow capacitors
- DOI:10.1016/j.jpowsour.2021.230187
- 发表时间:2021-09
- 期刊:
- 影响因子:9.2
- 作者:Pushpendra Singh;Bilen Akuzum;C. Shuck;K. Pal;Y. Gogotsi;E. C. Kumbur
- 通讯作者:Pushpendra Singh;Bilen Akuzum;C. Shuck;K. Pal;Y. Gogotsi;E. C. Kumbur
Two‐Dimensional MXene as a Nanofluidic Anolyte Additive for Enhancing Performance of Vanadium Redox Flow Batteries
- DOI:10.1002/batt.202200321
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Ali Vala Mizrak;Jonathan C. Ehring;M. Shekhirev;Robert W. Lord;Bilen Aküzüm;Pushpendra Singh;Y. Gogotsi;E. C. Kumbur
- 通讯作者:Ali Vala Mizrak;Jonathan C. Ehring;M. Shekhirev;Robert W. Lord;Bilen Aküzüm;Pushpendra Singh;Y. Gogotsi;E. C. Kumbur
A new static mixer concept for enhanced desalination performance in flow-electrode capacitive deionization (FCDI) systems
- DOI:10.1016/j.desal.2023.116887
- 发表时间:2023-08
- 期刊:
- 影响因子:9.9
- 作者:Jonathan C. Ehring;A. Mizrak;Lutfi Agartan;Bilen Aküzüm;E. C. Kumbur
- 通讯作者:Jonathan C. Ehring;A. Mizrak;Lutfi Agartan;Bilen Aküzüm;E. C. Kumbur
Multi-physics design optimization of structural battery
结构电池多物理场设计优化
- DOI:10.1088/2399-7532/abf158
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Pejman, Reza;Kumbur, Emin Caglan;Najafi, Ahmad Raeisi
- 通讯作者:Najafi, Ahmad Raeisi
Two-Dimensional MXene Modified Electrodes for Improved Anodic Performance in Vanadium Redox Flow Batteries
- DOI:10.1149/1945-7111/ac22cd
- 发表时间:2021-09-01
- 期刊:
- 影响因子:3.9
- 作者:Mizrak, Ali Vala;Uzun, Simge;Kumbur, E. Caglan
- 通讯作者:Kumbur, E. Caglan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emin Caglan Kumbur其他文献
Two-dimensional MXene based anodic slurry electrodes for vanadium redox flow batteries
用于钒氧化还原液流电池的二维 MXene 基阳极浆料电极
- DOI:
10.1016/j.electacta.2025.145865 - 发表时间:
2025-04-20 - 期刊:
- 影响因子:5.600
- 作者:
Ali Vala Mizrak;Huseyin Engin Sever;Jonathan C. Ehring;Kyle Matthews;Iryna Roslyk;Alex Inman;Emin Caglan Kumbur - 通讯作者:
Emin Caglan Kumbur
Emin Caglan Kumbur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emin Caglan Kumbur', 18)}}的其他基金
CAREER:The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media
职业:电化学流动电容器:流动介质中的电容储能
- 批准号:
1351161 - 财政年份:2014
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
I-Corps: Assessment of Commercial Viability of Electrochemical Flow Capacitors for Grid Scale Energy Storage
I-Corps:用于电网规模储能的电化学流动电容器的商业可行性评估
- 批准号:
1242519 - 财政年份:2012
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
Interfaces and Related Losses in PEM Fuel Cells: Theoretical and Experimental Studies
PEM 燃料电池中的界面和相关损耗:理论和实验研究
- 批准号:
1066623 - 财政年份:2011
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Development of coating film control technology for high-viscosity particle dispersion materials by controlling the shear force of a planetary spin coater
通过控制行星旋涂机的剪切力开发高粘度颗粒分散材料的涂膜控制技术
- 批准号:
21K20417 - 财政年份:2021
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Particle distribution on interface effect on capillary force and cracking during drying of colloidal dispersion film
胶体分散膜干燥过程中界面颗粒分布对毛细管力和开裂的影响
- 批准号:
21K20410 - 财政年份:2021
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigating Particle Dispersion and Methods to Improve Dispersion in Lithium-Ion Battery Slurries
研究颗粒分散性以及改善锂离子电池浆料分散性的方法
- 批准号:
537069-2018 - 财政年份:2019
- 资助金额:
$ 38.45万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Microscopic structure and macroscopic flow properties of soft-particle dispersion observed under microfluidic platforms
微流控平台下观察软颗粒分散体的微观结构和宏观流动特性
- 批准号:
19K14675 - 财政年份:2019
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Metallurgy of precipitation aiming at ductility enhancement: Fabrication and characterization of core-shell structured particle dispersion steels
以增强延展性为目的的沉淀冶金:核壳结构颗粒弥散钢的制备和表征
- 批准号:
17H01333 - 财政年份:2017
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The development of the impedance spectroscopy method to measure the particle dispersion degree in Lithium-ion battery (LIB) slurry
阻抗谱法测定锂离子电池(LIB)浆料颗粒分散度的研究进展
- 批准号:
17J03249 - 财政年份:2017
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Particle Dispersion in the Fraser River plume
弗雷泽河羽流中的颗粒分散
- 批准号:
513051-2017 - 财政年份:2017
- 资助金额:
$ 38.45万 - 项目类别:
University Undergraduate Student Research Awards
Development of a design guideline of the particle dispersion metal matrix material by the hybrid infiltration/reactiion method with considered the shape desinge of freedom
考虑自由度形状设计的混合渗透/反应法颗粒分散金属基材料设计指南的制定
- 批准号:
15K05678 - 财政年份:2015
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simulation of the dispersion of tisular fluids at the implant microgap by means of the moving particle semi-implicit method
移动粒子半隐式方法模拟种植体微间隙组织液的弥散
- 批准号:
26462949 - 财政年份:2014
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization and application of deformation and dissolution behavior of soft particles during plastic deformation in soft particle dispersion strengthening steel
软颗粒弥散强化钢塑性变形过程中软颗粒变形和溶解行为的表征及应用
- 批准号:
26289262 - 财政年份:2014
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




