III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research

III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络

基本信息

  • 批准号:
    2034562
  • 负责人:
  • 金额:
    $ 38.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-16 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Science disciplines have been generating huge volume of research publications, which is of tremendous value but far beyond researchers' capacity to digest and analyze. There is a critical need to automatically (with the help of widely available, general knowledge-bases) transform research text into structured information networks on which advanced search and analytics tools can be developed to facilitate researchers and practitioners to quickly locate knowledge, make inferences, and even generate new scientific hypothesis.This project aims at developing a new data-to-network-to-knowledge (D2N2K) paradigm to transform massive, unstructured but interconnected research text data into actionable knowledge, by integrating semi-structured and unstructured data. First, organized heterogeneous information networks (hence called StructNet) are constructed, and then powerful mining mechanisms on such organized networks are developed. With a focus on biomedical sciences, the project investigates the principles, methodologies and algorithms for (i) construction of relatively structured heterogeneous information networks (called MediNet) by mining biomedical research corpora via attribute extraction, relation typing, and claim mining, and (ii) exploration and mining of the networks so constructed via graph OLAP and task-guided embedding. The project develops an extensible framework to facilitate literature-based scientific research. The study on construction and exploration of MediNet not only impacts biomedical research but also consolidates this data-to-network-to knowledge methodology, readily to be transferred to other domains, for automatic transformation of massive unstructured text data in those domains into structured and actionable knowledge.
科学学科产生了大量的研究出版物,这些出版物具有巨大的价值,但远远超出了研究人员的消化和分析能力。迫切需要将研究文本自动(借助于广泛可用的通用知识库)转换为结构化信息网络,在该网络上可以开发高级搜索和分析工具,以帮助研究人员和从业者快速定位知识、做出推理,甚至生成新的科学假设。该项目旨在开发一种新的数据到网络到知识(D2N2K)范式,通过整合半结构化和非结构化数据,将海量、非结构化但相互关联的研究文本数据转换为可操作的知识。首先构建了有组织的异质信息网络(StructNet),然后在这种有组织的网络上开发了强大的挖掘机制。该项目以生物医学科学为重点,研究用于(I)通过属性提取、关系分类和索赔挖掘挖掘生物医学研究语料库来构建相对结构化的异质信息网络(称为Medeeet)的原理、方法和算法,以及(Ii)通过图OLAP和任务引导嵌入来探索和挖掘如此构建的网络。该项目开发了一个可扩展的框架,以促进基于文献的科学研究。MEDINET的构建和探索研究不仅影响了生物医学研究,而且巩固了这种数据到网络到知识的方法论,便于转移到其他领域,将这些领域中的海量非结构化文本数据自动转换为结构化和可操作的知识。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks
  • DOI:
    10.18653/v1/2021.findings-emnlp.140
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lai;Heng Ji;ChengXiang Zhai
  • 通讯作者:
    T. Lai;Heng Ji;ChengXiang Zhai
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
  • DOI:
    10.18653/v1/2021.naacl-demos.8
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingyun Wang;Manling Li;Xuan Wang;Nikolaus Nova Parulian;G. Han;Jiawei Ma;Jingxuan Tu;Ying Lin;H. Zhang;Weili Liu;Aabhas Chauhan;Yingjun Guan;Bangzheng Li;Ruisong Li;Xiangchen Song;Heng Ji;Jiawei Han;Shih-Fu Chang;J. Pustejovsky;D. Liem;Ahmed Elsayed;Martha Palmer;Jasmine Rah;Cynthia Schneider;Boyan A. Onyshkevych
  • 通讯作者:
    Qingyun Wang;Manling Li;Xuan Wang;Nikolaus Nova Parulian;G. Han;Jiawei Ma;Jingxuan Tu;Ying Lin;H. Zhang;Weili Liu;Aabhas Chauhan;Yingjun Guan;Bangzheng Li;Ruisong Li;Xiangchen Song;Heng Ji;Jiawei Han;Shih-Fu Chang;J. Pustejovsky;D. Liem;Ahmed Elsayed;Martha Palmer;Jasmine Rah;Cynthia Schneider;Boyan A. Onyshkevych
Fine-Grained Chemical Entity Typing with Multimodal Knowledge Representation
Joint Biomedical Entity and Relation Extraction with Knowledge-Enhanced Collective Inference
  • DOI:
    10.18653/v1/2021.acl-long.488
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lai;Heng Ji;ChengXiang Zhai;Quan Hung Tran
  • 通讯作者:
    T. Lai;Heng Ji;ChengXiang Zhai;Quan Hung Tran
Chemical-Reaction-Aware Molecule Representation Learning
  • DOI:
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongwei Wang;Weijian Li;Xiaomeng Jin;Kyunghyun Cho;Heng Ji;Jiawei Han;M. Burke
  • 通讯作者:
    Hongwei Wang;Weijian Li;Xiaomeng Jin;Kyunghyun Cho;Heng Ji;Jiawei Han;M. Burke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Ji其他文献

Fundamentals of reduction of CaO•Fe2O3 in CO/CO2 gas at 1000°C
1000℃ CO/CO2 气体中 CaO™ Fe2O3 还原的基本原理
  • DOI:
    10.1080/03019233.2022.2140255
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Haiwei An;Xin Jiang;Heng Ji;Zhixin Zhang;Liang He;Haiyan Zheng;Qiangjian Gao;Fengman Shen
  • 通讯作者:
    Fengman Shen
The Science of Precision Prevention
精准预防的科学
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas A. Pearson;Debbie Vitalis;Charlotte A. Pratt;Rebecca Campo;A. Armoundas;David Au;Bettina Beech;Olga Brazhnik;Christopher G. Chute;Karina W. Davidson;Ana V. Diez;Lawrence J. Fine;D. Gabriel;Peter Groenveld;Jaclyn Hall;Alison B. Hamilton;Hui Hu;Heng Ji;Amy Kind;William E Kraus;Harlan Krumholz;George A Mensah;R. Merchant;D. Mozaffarian;David M. Murray;Dianne R. Neumark;Maya Petersen;David C Goff
  • 通讯作者:
    David C Goff
UIUC TAC 2020 RUFES System Description
UIUC TAC 2020 RUFES 系统说明
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Reddy;Manling Li;Haoyang Wen;Heng Ji
  • 通讯作者:
    Heng Ji
Multi-document Summarization via Information Extraction : A Revisit
通过信息提取进行多文档摘要:重温
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Ji;Juan Liu;Benoit Favre;D. Gillick;Dilek Z. Hakkani
  • 通讯作者:
    Dilek Z. Hakkani
COVID-19 Claim Radar: A Structured Claim Extraction and Tracking System
COVID-19 索赔雷达:结构化索赔提取和跟踪系统

Heng Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Ji', 18)}}的其他基金

III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research
III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络
  • 批准号:
    1704001
  • 财政年份:
    2017
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant
CAREER: Cross-Document Cross-Lingual Event Extraction and Tracking
职业:跨文档跨语言事件提取和跟踪
  • 批准号:
    1523198
  • 财政年份:
    2015
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant
CAREER: Cross-Document Cross-Lingual Event Extraction and Tracking
职业:跨文档跨语言事件提取和跟踪
  • 批准号:
    0953149
  • 财政年份:
    2010
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了