Collaborative Research: Decoding the Corrosion of Borate Glasses: From Fundamental Science to Quantitative Structure-Property Relationships
合作研究:解码硼酸盐玻璃的腐蚀:从基础科学到定量结构-性能关系
基本信息
- 批准号:2034856
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Chemical durability of glass is a topic of interest today; fundamental understanding is of paramount importance to the glass industry and to the pursuit of overcoming various challenges relevant to the well-being of humanity and the environment, including nuclear waste management and development of novel biomaterials. This project aims at understanding the fundamental science governing corrosion of multicomponent borate glasses, achieved through the unification of experimental studies and artificial intelligence. Successful completion of this project is expected to lay the foundation of new fundamental knowledge to understand and describe composition-structure-property relationships in glass corrosion, and advance new machine learning-based models to promptly and reliably predict the corrosion behavior of borate glasses. The U.S. glass/materials industry is facing a severe shortage of experienced glass engineers/scientists. The project reduces this shortage by training undergraduate and graduate students in glass science and engineering, thus providing a talent pool for the U.S. glass/materials industry, academia, and national laboratories. The education and outreach activities are designed to invoke interest in students and teachers at the middle and high school levels, in addition to the training of undergraduate and graduate science and engineering students. TECHNICAL DETAILS: Our current understanding of glass corrosion is based primarily on empirical data, as there is still no complete consensus on the primary mechanism of glass dissolution that applies across a wide composition space. Therefore, there is an exigent need to develop robust, fundamental understanding of the linkage(s) between chemical composition, atomic/molecular structure, and chemical durability of glasses in order to address crucial and scientifically challenging problems (e.g., designing glasses with desired chemical durability). Accordingly, the project aims at combining the strengths of experimental studies and artificial intelligence to reveal the underlying mechanisms that dictate the dissolution behavior of borate glasses in aqueous environments; and developing a cloud-based quantitative structure-property relationship (QSPR) model – powered by theory-guided machine learning engine – to predict the time-dependent corrosion behavior of oxide glasses. Enabling the materials-by-design approach – which is in alignment with the U.S. Materials Genome Initiative – this project is a pioneering effort, representing a leap forward in designing oxide glasses with controlled chemical durability. Apart from revealing fundamental drivers of glass corrosion and advancing a QSPR model to reliably predict glass corrosion, a significant outcome of the project is the development of a talent pipeline of undergraduate and graduate students well-trained in glass/materials science and machine learning. Further, the project's education plan incorporates a foundational, spiral approach that builds interest at the elementary, middle, and high school level students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:玻璃的化学耐久性是当今人们感兴趣的话题;基本的理解对于玻璃工业和追求克服与人类福祉和环境相关的各种挑战至关重要,包括核废料管理和新型生物材料的开发。该项目旨在了解控制多组分硼酸玻璃腐蚀的基础科学,通过实验研究和人工智能的统一来实现。该项目的成功完成有望为理解和描述玻璃腐蚀中的成分-结构-性能关系奠定新的基础知识,并提出新的基于机器学习的模型,以及时可靠地预测硼酸盐玻璃的腐蚀行为。美国玻璃/材料行业正面临着经验丰富的玻璃工程师/科学家的严重短缺。该项目通过培养玻璃科学和工程专业的本科生和研究生,从而为美国玻璃/材料行业、学术界和国家实验室提供人才库,从而减少了这一短缺。教育和推广活动的目的是唤起初中和高中学生和教师的兴趣,以及培训本科和研究生科学和工程专业的学生。技术细节:我们目前对玻璃腐蚀的理解主要是基于经验数据,因为在玻璃溶解的主要机制上仍然没有完全的共识,适用于广泛的成分空间。因此,迫切需要对玻璃的化学成分、原子/分子结构和化学耐久性之间的联系进行强有力的、基本的理解,以解决关键的、具有科学挑战性的问题(例如,设计具有理想化学耐久性的玻璃)。因此,该项目旨在结合实验研究和人工智能的优势,揭示决定硼酸盐玻璃在水环境中溶解行为的潜在机制;并开发基于云的定量结构-性能关系(QSPR)模型-由理论指导的机器学习引擎驱动-预测氧化玻璃的随时间腐蚀行为。实现材料设计方法-这与美国材料基因组计划一致-该项目是一项开创性的努力,代表了设计具有可控化学耐久性的氧化玻璃的飞跃。除了揭示玻璃腐蚀的基本驱动因素和推进QSPR模型以可靠地预测玻璃腐蚀之外,该项目的一个重要成果是培养了一支在玻璃/材料科学和机器学习方面受过良好训练的本科生和研究生的人才队伍。此外,该项目的教育计划采用了一种基础的、螺旋式的方法,在小学、初中和高中阶段培养学生的兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Dissolution Kinetics of Tricalcium Silicate Using Deep Learning and Analytical Models
- DOI:10.3390/a16010007
- 发表时间:2022-12
- 期刊:
- 影响因子:2.3
- 作者:Taihao Han;Sai Akshay Ponduru;Arianit A. Reka;Jie Huang;G. Sant;Aditya Kumar
- 通讯作者:Taihao Han;Sai Akshay Ponduru;Arianit A. Reka;Jie Huang;G. Sant;Aditya Kumar
A Deep Learning Approach to Design and Discover Sustainable Cementitious Binders: Strategies to Learn From Small Databases and Develop Closed-form Analytical Models
- DOI:10.3389/fmats.2021.796476
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Taihao Han;Sai Akshay Ponduru;R. Cook;Jie Huang;G. Sant;Aditya Kumar
- 通讯作者:Taihao Han;Sai Akshay Ponduru;R. Cook;Jie Huang;G. Sant;Aditya Kumar
Deep learning to predict the hydration and performance of fly ash-containing cementitious binders
- DOI:10.1016/j.cemconres.2023.107093
- 发表时间:2023-03
- 期刊:
- 影响因子:11.4
- 作者:Taihao Han;Rohan Bhat;Sai Akshay Ponduru;A. Sarkar;Jie Huang;G. Sant;Hongyan Ma;N. Neithalath;Aditya Kumar
- 通讯作者:Taihao Han;Rohan Bhat;Sai Akshay Ponduru;A. Sarkar;Jie Huang;G. Sant;Hongyan Ma;N. Neithalath;Aditya Kumar
Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses
机器学习模型可预测核废料玻璃中的硫溶解度
- DOI:10.1021/acsami.1c10359
- 发表时间:2021
- 期刊:
- 影响因子:9.5
- 作者:Xu, Xinyi;Han, Taihao;Huang, Jie;Kruger, Albert A.;Kumar, Aditya;Goel, Ashutosh
- 通讯作者:Goel, Ashutosh
Machine learning enabled closed‐form models to predict strength of alkali‐activated systems
机器学习使封闭式模型能够预测碱激活系统的强度
- DOI:10.1111/jace.18399
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Han, Taihao;Gomaa, Eslam;Gheni, Ahmed;Huang, Jie;ElGawady, Mohamed;Kumar, Aditya
- 通讯作者:Kumar, Aditya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditya Kumar其他文献
Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals
探讨碳量子点对铁电液晶部分展开螺旋模式的影响
- DOI:
10.1063/1.5082903 - 发表时间:
2019 - 期刊:
- 影响因子:3.2
- 作者:
L. K. Gangwar;Aditya Kumar;Gautam Singh;A. Choudhary;Rajesh;Surinder P. Singh;A. Biradar - 通讯作者:
A. Biradar
Effect of integrated use of NPKZn, FYM and bio-fertilizers on soil properties and performance of rice crop (Oryza sativa L.)
NPKZn、FYM 和生物肥料综合使用对土壤性质和水稻生长性能的影响 (Oryza sativa L.)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aditya Kumar;S. Shahi;A. Singh;Chandrashekhar - 通讯作者:
Chandrashekhar
Dynamics and control of integrated networks with purge streams
具有吹扫流的集成网络的动态和控制
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
M. Baldea;P. Daoutidis;Aditya Kumar - 通讯作者:
Aditya Kumar
Financial Prudence of Healthcare Screening Program in Urban Set-up
城市医疗筛查项目的财务审慎
- DOI:
10.5005/jp-journals-10035-1091 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aditya Kumar;S. Patnaik;M. Singh;Nishu Singh;Ashuthosh Sharma;T. Paul - 通讯作者:
T. Paul
A novel method to predict die shift during compression molding in embedded wafer level package
一种预测嵌入式晶圆级封装压缩成型过程中芯片移位的新方法
- DOI:
10.1109/ectc.2009.5074066 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
C. H. Khong;Aditya Kumar;Xiaowu Zhang;G. Sharma;S. Vempati;K. Vaidyanathan;J. Lau;D. Kwong - 通讯作者:
D. Kwong
Aditya Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditya Kumar', 18)}}的其他基金
A Thermo-Kinetic Approach to Enhance the Use of Clays in Concrete
提高粘土在混凝土中使用的热动力学方法
- 批准号:
1661609 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
- 批准号:
2147598 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
- 批准号:
2147603 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106213 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Decoding the Corrosion of Borate Glasses: From Fundamental Science to Quantitative Structure-Property Relationships
合作研究:解码硼酸盐玻璃的腐蚀:从基础科学到定量结构-性能关系
- 批准号:
2034871 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106189 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: SLINGSHOT: Decoding Dark Matter through Gravitational Lensing
合作研究:弹弓:通过引力透镜解码暗物质
- 批准号:
2108645 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SitS NSF UKRI: Decoding Nitrogen Dynamics in Soil through Novel Integration of in-situ Wireless Soil Sensors with Numerical Modeling
合作研究:SitS NSF UKRI:通过原位无线土壤传感器与数值建模的新颖集成解码土壤中的氮动态
- 批准号:
1935599 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: MTM 1: Decoding the genomic rules of denitrification in bacterial communities
合作研究:MTM 1:解码细菌群落反硝化的基因组规则
- 批准号:
2025293 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Optimization for Barcoding and Decoding Single-Cell Dynamics via CRISPR Gene Editing
合作研究:通过 CRISPR 基因编辑对单细胞动力学进行条形码和解码的统计优化
- 批准号:
1953415 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SitS NSF UKRI: Decoding Nitrogen Dynamics in Soil through Novel Integration of in-situ Wireless Soil Sensors with Numerical Modeling
合作研究:SitS NSF UKRI:通过原位无线土壤传感器与数值建模的新颖集成解码土壤中的氮动态
- 批准号:
1935578 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant