RAPID/Collaborative Research: An Empirical Investigation of Risk Preferences of Transportation Construction Workforce Managers under COVID-19 Pandemic Uncertainties
RAPID/协作研究:COVID-19 大流行不确定性下交通建设劳动力管理者风险偏好的实证调查
基本信息
- 批准号:2035198
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this Rapid Response Research (RAPID) project is to identify new challenges and determine factors impacting workforce decision-making processes in the transportation construction industry under COVID-19 pandemic uncertainties. Never in the history of modern transportation infrastructure construction, has the industry had to adapt to a nationwide threat to their workforce and changing public health guidelines and constraints. How are workforce managers seeking to operate, maintain, and construct lifeline transportation infrastructure projects without risking the safety and health of their vital resources (workers, operators, engineers, fabricators, and project managers)? Workforce decision makers are dealing with a daunting task. The public expects no disruptions in receiving critical infrastructure services in these challenging times. And more importantly, the public expects limited risk of virus infection while using these critical infrastructures. COVID-19 continues to have substantial impacts on workstyle in the transportation construction industry. The pandemic challenges threaten the operations of transportation infrastructure systems that are facing ever-increasing impacts of weather-related disasters. Yet, transportation infrastructure construction and inspection cannot be delayed. Transportation infrastructure is essential to not only fulfill the daily needs of human beings but also combat the COVID-19 outbreak. The success of this research is contingent upon the collection of time-bound data on the workforce managers’ thought processes during the COVID-19 pandemic. This project will not only enhance the science of decision making under pandemic uncertainty, but also provide critical information for the transportation construction industry regarding best practices during a pandemic and effective strategies for adapting to the uncertainties emerging and evolving from this unprecedented event. Because of the exploratory nature of this research, PIs will use a combination of methods, such as surveys and follow-up interviews with key informants in state transportation agencies, to identify new challenges of workforce decision-making during the COVID-19 pandemic and determine factors impacting decision-making processes. Supporting documents will be collected from the key informants following the interviews (e.g., collecting and analyzing their revealed choices manifested in COVID-19 actions, organizational COVID-19 daily updates, internal operations memos, and public news) for further content analysis. The PIs will assemble a variety of questions that enable a thorough investigation of critical factors impacting workforce decision-making in the unique pandemic condition. These factors will include major pandemic issues, such as essential versus non-essential operations, construction site shutdown (planned or unplanned), project suspension at any stage of construction (for a designate or unknown period of time), restarting construction, project continuation, suspension, and delay, expedited construction operations to take advantage of the declined traffic and receive early completion incentives, and occupational safety policies (social distancing and wearing N95 masks). Employing the ephemeral empirical evidence rigorously collected in this RAPID project, the PIs will be able to examine and model the risk preferences of workforce decision makers under pandemic uncertainties. Successful identification of the factors impacting decision-making processes will be critical for the develop of a novel multi-attribute utility choice models that capture the risk preferences of decision makers in the transportation construction industry under pandemic uncertainties. Revealing factors impacting decision-making processes will pave the way to inform workforce policies under pandemic uncertainties. The findings will be disseminated widely through the creation of easy-to-understand and practical educational materials that are integrated with the research components so that they can improve each other. This project will also engage underrepresented students from diverse backgrounds in research activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本快速反应研究(Rapid)项目的目标是在2019冠状病毒病大流行的不确定性下,识别新的挑战,确定影响交通建设行业劳动力决策过程的因素。在现代交通基础设施建设的历史上,该行业从来没有不得不适应对其劳动力的全国性威胁以及不断变化的公共卫生指导方针和限制。劳动力管理人员如何在不危及其重要资源(工人、操作员、工程师、制造商和项目经理)的安全和健康的情况下,寻求操作、维护和构建生命线运输基础设施项目?劳动力决策者正在处理一项艰巨的任务。公众期望在这个充满挑战的时期,重要的基础设施服务不会受到干扰。更重要的是,公众期望在使用这些关键基础设施时感染病毒的风险有限。2019冠状病毒病继续对交通建设行业的工作方式产生重大影响。大流行的挑战威胁着交通基础设施系统的运行,这些系统正面临着与天气有关的灾害日益严重的影响。但是,交通基础设施建设和检查不能拖延。交通基础设施不仅是满足人类日常生活需求的关键,也是抗击新冠肺炎疫情的关键。这项研究的成功取决于收集有关2019冠状病毒病大流行期间劳动力管理人员思维过程的有时限数据。该项目不仅将加强大流行不确定性下的决策科学,而且还将为交通建设行业提供关于大流行期间最佳做法的关键信息,以及适应这一前所未有事件出现和演变的不确定性的有效战略。由于本研究的探索性,pi将采用多种方法,如调查和对州交通机构关键举报人的后续访谈,以确定2019冠状病毒病大流行期间劳动力决策的新挑战,并确定影响决策过程的因素。访谈结束后,将从关键举报人处收集支持性文件(例如,收集和分析他们在COVID-19行动、组织COVID-19每日更新、内部操作备忘录和公共新闻中透露的选择),以进一步进行内容分析。pi将汇集各种问题,以便在独特的大流行情况下彻底调查影响劳动力决策的关键因素。这些因素将包括重大流行病问题,例如必要作业与非必要作业、建筑工地停工(计划内或计划外)、项目在施工的任何阶段暂停(指定或未知时间段)、重新开工、项目继续、暂停和延迟、加快施工作业以利用交通减少并获得提前完工奖励。职业安全政策(保持社交距离和佩戴N95口罩)。通过利用该RAPID项目严格收集的短期经验证据,pi将能够在大流行不确定的情况下检查和模拟劳动力决策者的风险偏好。成功识别影响决策过程的因素对于开发新的多属性效用选择模型至关重要,该模型可以捕捉大流行不确定性下交通建设行业决策者的风险偏好。揭示影响决策过程的因素将为大流行不确定性下的劳动力政策提供信息铺平道路。研究结果将通过编写易于理解和实用的教育材料广泛传播,这些材料将与研究组成部分结合起来,使它们能够相互改进。该项目还将吸引来自不同背景的代表性不足的学生参与研究活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Availability Heuristic in Construction Workforce Decision-Making amid COVID-19 Pandemic: Empirical Evidence and Mitigation Strategy
COVID-19 大流行期间建筑劳动力决策中的可用性启发式:经验证据和缓解策略
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:7.4
- 作者:Yunping Liang, Anil Baral
- 通讯作者:Yunping Liang, Anil Baral
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baabak Ashuri其他文献
Timing residential photovoltaic investments in the presence of demand uncertainties
- DOI:
10.1016/j.scs.2015.10.003 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Mostafa Reisi Gahrooei;Yuna Zhang;Baabak Ashuri;Godfried Augenbroe - 通讯作者:
Godfried Augenbroe
Enriching GPS data for expanding interpretation of emergency vehicles using a pathfinding algorithm and spatial data harvesting methods
- DOI:
10.1016/j.scs.2023.104600 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
Heung Jin Oh;Baabak Ashuri - 通讯作者:
Baabak Ashuri
Baabak Ashuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baabak Ashuri', 18)}}的其他基金
Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
- 批准号:
2246298 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Valuation of Investments in Building Energy Improvements under Uncertainties
不确定性下建筑能源改善投资的估值
- 批准号:
1300918 - 财政年份:2013
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant