RAPID: Collaborative Research: The Transformation of Essential Work: Managing the Introduction of AI in Response to COVID-19

RAPID:协作研究:基本工作的转变:管理人工智能的引入以应对 COVID-19

基本信息

  • 批准号:
    2037348
  • 负责人:
  • 金额:
    $ 12.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Millions of people deemed “essential workers” in the COVID-19 pandemic perform manual labor, such as sorting, cleaning, garbage collection, and recycling. To mitigate risks associated with this work, there is an accelerated push to introduce artificial intelligence (AI) to safeguard the public and workers from disease transmission. Yet, decades of human-computer interaction and organizational communication research shows that the introduction of new technologies into workplaces is not an easy transition; instead technologies transform and displace existing work practices. This research project investigates both beneficial innovations and liabilities arising in waste management industries, as they deploy AI technologies in response to the COVID-19 crisis. It develops a set of best practices for the coordination of human labor and AI to address the pandemic, transforming the future of work. The best practices will be presented as guidance on how to incorporate AI into critical economic institutions to mitigate the negative effects of COVID-19 on public health, society, and the economy. This guidance will regularly be communicated to workers, industry leaders, and the public through an open access toolkit, a workshop series, press releases, and social media. This will potentially benefit essential industries that employ or serve tens of millions of workers, including waste labor, shipping, manufacturing, retail, and food service.This project will be conducted through a multi-site ethnographic study, examining how two American waste management organizations negotiate the introduction of automated technologies, in an effort to mitigate risks associated with the COVID-19 pandemic. The first involves automated “floor care” robots at Pittsburgh International Airport. The second involves AI sorting systems in a single stream recycling plant, in Austin, Texas. By studying two sites, the research team is expected to gain comparative insight into how automation is introduced and attuned, according to professional, regional, and institutional norms. Data collection will include ethnographic fieldnotes, interview transcripts, and media materials. Extending theories of technological diffusion and invisible labor, the research team will qualitatively analyze the technology dissemination process, drawing insights from the actions and perspectives of workers as they negotiate the changing shape of their daily work. Through reflexive memos and “constant comparative” coding, the research will identify patterns of action and build a set of transferable observations. This is expected to yield (1) empirical findings on factors that promote or hinder rapid technological introduction in response to crisis, with specific insights on the human labor required to make automated technologies work (e.g., calibration, troubleshooting, and maintenance), (2) theoretical findings that contribute core understandings of the diffusion of innovation and how workplace technologies are reinvented through use, and (3) design recommendations for a variety of essential work sectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在COVID-19大流行中,数百万人被视为“必要工作者”,从事体力劳动,如分类、清洁、垃圾收集和回收。为了降低与这项工作相关的风险,人们正在加速推动引入人工智能(AI),以保护公众和工人免受疾病传播。然而,数十年的人机交互和组织沟通研究表明,将新技术引入工作场所并不是一个容易的过渡;相反,技术改变并取代了现有的工作实践。该研究项目调查了废物管理行业在应对COVID-19危机时部署人工智能技术所产生的有益创新和责任。它开发了一套最佳实践,用于协调人力和人工智能,以应对这一流行病,改变未来的工作。最佳实践将作为如何将人工智能纳入关键经济机构的指导,以减轻COVID-19对公共卫生,社会和经济的负面影响。该指南将通过开放获取工具包、系列研讨会、新闻稿和社交媒体定期传达给工人、行业领袖和公众。该项目将通过一项多地点的人种学研究进行,研究美国两家废物管理组织如何就引入自动化技术进行谈判,以努力减轻与COVID-19大流行相关的风险。第一个涉及匹兹堡国际机场的自动“地板护理”机器人。第二个涉及德克萨斯州奥斯汀一家单流回收工厂的人工智能分拣系统。通过研究两个地点,研究团队有望根据专业、地区和机构规范,比较了解自动化是如何引入和调整的。数据收集将包括人种学田野记录,访谈记录和媒体材料。研究团队将扩展技术扩散和无形劳动的理论,定性分析技术传播过程,从工人的行动和观点中汲取见解,因为他们谈判日常工作的变化形式。通过自反性备忘录和“恒定比较”编码,研究将识别行动模式,并建立一套可转移的观察结果。预计这将产生(1)关于促进或阻碍快速技术引进以应对危机的因素的实证研究结果,具体了解使自动化技术发挥作用所需的人力(例如,校准、故障排除和维护),(2)有助于对创新扩散以及如何通过使用重新改造工作场所技术的核心理解的理论发现,以及(3)针对各种基本工作部门的设计建议。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tech labor: a new interactions forum
科技劳工:新的互动论坛
  • DOI:
    10.1145/3466994
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avle, Seyram;Fox, Sarah
  • 通讯作者:
    Fox, Sarah
Patchwork: The Hidden, Human Labor of AI Integration within Essential Work
  • DOI:
    10.1145/3579514
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sarah E. Fox;S. Shorey;Esther Y. Kang;Dominique A. Montiel Valle;Estefania Rodriguez
  • 通讯作者:
    Sarah E. Fox;S. Shorey;Esther Y. Kang;Dominique A. Montiel Valle;Estefania Rodriguez
AI and essential labor: representing the invisible work of integration
人工智能与基本劳动:代表着无形工作的融合
  • DOI:
    10.1145/3495253
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spektor, Franchesca;Rodriguez, Estefania;Shorey, Samantha;Fox, Sarah
  • 通讯作者:
    Fox, Sarah
Stories from the Frontline: Recuperating Essential Worker Accounts of AI Integration
Discarded Labor:: Countervisualities for Representing AI Integration in Essential Work
被抛弃的劳动力:代表人工智能在基本工作中的整合的反视觉
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Fox其他文献

First-perspective spatial alignment effects from real-world exploration
来自现实世界探索的第一视角空间对齐效果
  • DOI:
    10.3758/bf03193613
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    P. Wilson;Duncan A Wilson;Laura Griffiths;Sarah Fox
  • 通讯作者:
    Sarah Fox
Perspectives on brain health and dementia prevention in Latin America: challenges and opportunities
拉丁美洲大脑健康和痴呆症预防的观点:挑战和机遇
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sarah Fox;Tomás León;Luciano Mariano;Faheem Arshad;Nahuel Magrath Guimet;Grainne Hope;Kuripacha Tituaña;Lina María Zapata
  • 通讯作者:
    Lina María Zapata
Elementary School Garden Programs Enhance Science Education for All Learners
小学花园计划加强所有学习者的科学教育
  • DOI:
    10.1177/004005991204400606
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1
  • 作者:
    J. Rye;Sarah Selmer;Sara Pennington;L. Vanhorn;Sarah Fox;S. Kane
  • 通讯作者:
    S. Kane
The Efficacy of Phenol-Glucose-Glycerin Mixtures as a Prolotherapy Proliferative Substance on Fibroblast Tissue Culture
苯酚-葡萄糖-甘油混合物作为增生疗法增生物质对成纤维细胞组织培养的功效
  • DOI:
    10.1016/j.jpain.2024.01.106
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Peter Sells;Allen Vayster;Amy Hinkelman;Thomas Motyka;Adam Foster;Bethany Harding;Sarah Fox
  • 通讯作者:
    Sarah Fox
Near Infrared Topography with Depth Information for the Detection of Face Perception in Infants
具有深度信息的近红外地形图用于检测婴儿的面部感知
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Blasi;N. Everdell;J. Hebden;C. Elwell;Sarah Fox;L. Tucker;A. Volein;G. Csibra;Mark H. Johnson
  • 通讯作者:
    Mark H. Johnson

Sarah Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Fox', 18)}}的其他基金

SCC-PG: Equitable new mobility: Community-driven mechanisms for designing and evaluating personal delivery device deployments
SCC-PG:公平的新移动性:用于设计和评估个人交付设备部署的社区驱动机制
  • 批准号:
    2125350
  • 财政年份:
    2021
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
British Science Association AS/A-level Science Journalism competition 2017
2017 年英国科学协会 AS/A 级科学新闻竞赛
  • 批准号:
    ST/P006043/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 12.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了