EAGER: SciDatBench: Principles and Prototypes of Science Data Benchmarks
EAGER:SciDatBench:科学数据基准的原理和原型
基本信息
- 批准号:2038007
- 负责人:
- 金额:$ 29.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analysis of large scientific data sets requires new research in both the data analysis methods and the information technology hardware and software to use in the analysis. This project is investigating and prototyping a new set of science data benchmarks, dubbed SciDatBench. It establishes a new collection of important and representative big scientific datasets together with typical software implementations of the machine learning algorithms that are needed for best practice analysis. The SciDatBench collection is accompanied by documentation allowing it to be used in the training of researchers in the rapidly evolving Big Data analysis techniques. The project has a potential to impact a broad range of scientific disciplines including eventually material sciences, environmental sciences, life sciences including epidemiology, fusion, particle physics, astronomy, earthquake, and earth sciences, with more than one representative problem from each of these domains.SciDatBench generates particular instances of big data analysis benchmarks and establishes a sustainable process for maintaining and enhancing them. This collection includes both standalone examples and end-to-end examples needing multiple components that are seen in the analysis of many science experiments. SciDatBench is affiliated as an approved Science Data working group with the very successful MLPerf activity with 80 organizational members looking at Industry machine learning benchmarks. The state-of-the-art examples in SciDatBench are contributing to progress in scientific discovery that advances the national health, prosperity, and welfare, as stated by NSF's mission. The project is proactively involving under-represented communities in its activities. SciDatBench supports comparative studies and identifies requirements for future cyberinfrastructure to support scientific data analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分析大型科学数据集需要在数据分析方法和分析中使用的信息技术硬件和软件方面进行新的研究。该项目正在研究和原型设计一套新的科学数据基准,称为SciDatBench。它建立了一个新的重要和代表性的大型科学数据集集合,以及最佳实践分析所需的机器学习算法的典型软件实现。SciDatBench集合附带文档,允许其用于快速发展的大数据分析技术的研究人员培训。该项目有可能影响广泛的科学学科,最终包括材料科学,环境科学,生命科学,包括流行病学,聚变,粒子物理,天文学,地震和地球科学,每个领域都有一个以上的代表性问题。SciDatBench生成特定的大数据分析基准实例,并建立一个可持续的过程来维护和增强它们。该集合包括独立示例和需要多个组件的端到端示例,这些示例在许多科学实验的分析中可见。SciDatBench是一个经过批准的科学数据工作组,拥有非常成功的MLPerf活动,有80个组织成员关注行业机器学习基准。正如NSF的使命所述,SciDatBench中最先进的例子有助于科学发现的进步,促进国家的健康,繁荣和福利。该项目积极主动地让代表性不足的社区参与其活动。SciDatBench支持比较研究,并确定未来网络基础设施的需求,以支持科学数据分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scientific machine learning benchmarks
- DOI:10.1038/s42254-022-00441-7
- 发表时间:2021-10
- 期刊:
- 影响因子:38.5
- 作者:J. Thiyagalingam;M. Shankar;Geoffrey Fox;Tony (Anthony) John Grenville Hey
- 通讯作者:J. Thiyagalingam;M. Shankar;Geoffrey Fox;Tony (Anthony) John Grenville Hey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Fox其他文献
QuakeSim: Integrated modeling and analysis of geologic and remotely sensed data
QuakeSim:地质和遥感数据的集成建模和分析
- DOI:
10.1109/aero.2012.6187219 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Donnellan;Jay Parker;R. Granat;E. D. Jong;Shigeru Suzuki;M. Pierce;Geoffrey Fox;John Rundle;Dennis McLeod;R. Al;L. G. Ludwig - 通讯作者:
L. G. Ludwig
Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science
发现之门:科学长尾的网络基础设施
- DOI:
10.1145/2616498.2616540 - 发表时间:
2014 - 期刊:
- 影响因子:3.4
- 作者:
R. Moore;C. Baru;Diane A. Baxter;Geoffrey Fox;A. Majumdar;P. Papadopoulos;W. Pfeiffer;R. Sinkovits;Shawn M. Strande;M. Tatineni;R. Wagner;Nancy Wilkins;M. Norman - 通讯作者:
M. Norman
Complete exchange on the CM-5 and Touchstone Delta
- DOI:
10.1007/bf01901612 - 发表时间:
1995-12-01 - 期刊:
- 影响因子:2.700
- 作者:
Rajeev Thakur;Ravi Ponnusamy;Alok Choudhary;Geoffrey Fox - 通讯作者:
Geoffrey Fox
Advances in big data programming, system software and HPC convergence
- DOI:
10.1007/s11227-018-2706-x - 发表时间:
2019-02-26 - 期刊:
- 影响因子:2.700
- 作者:
Ching-Hsien Hsu;Geoffrey Fox;Geyong Min;Sugam Sharma - 通讯作者:
Sugam Sharma
Design patterns for scientific applications in DryadLINQ CTP
DryadLINQ CTP 中科学应用的设计模式
- DOI:
10.1145/2087522.2087533 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hui Li;Yang Ruan;Yuduo Zhou;J. Qiu;Geoffrey Fox - 通讯作者:
Geoffrey Fox
Geoffrey Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Fox', 18)}}的其他基金
Conference: 2023 NSF CyberTraining Principal Investigator (PI) Meeting
会议:2023 年 NSF 网络培训首席研究员 (PI) 会议
- 批准号:
2333991 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER: SciDatBench: Principles and Prototypes of Science Data Benchmarks
EAGER:SciDatBench:科学数据基准的原理和原型
- 批准号:
2204115 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Smart Surrogates for High Performance Scientific Simulations
合作研究:OAC Core:高性能科学模拟的智能替代品
- 批准号:
2212550 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
CyberTraining: CIC: CyberTraining for Students and Technologies from Generation Z
网络培训:CIC:针对 Z 世代学生和技术的网络培训
- 批准号:
2200409 - 财政年份:2021
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
2210266 - 财政年份:2021
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
CyberTraining: CIC: CyberTraining for Students and Technologies from Generation Z
网络培训:CIC:针对 Z 世代学生和技术的网络培训
- 批准号:
1829704 - 财政年份:2018
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
1835631 - 财政年份:2018
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: Streaming and Steering Applications: Requirements and Infrastructure (October 1-3, 2015)
合作研究:流媒体和转向应用:要求和基础设施(2015 年 10 月 1-3 日)
- 批准号:
1549544 - 财政年份:2015
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
International Summer School on Data Science for Scattering Reactions
散射反应数据科学国际暑期学校
- 批准号:
1513524 - 财政年份:2015
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: The Power of Many: Scalable Compute and Data-Intensive Science on Blue Waters
协作研究:多人的力量:蓝水域的可扩展计算和数据密集型科学
- 批准号:
1515779 - 财政年份:2015
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SciDatBench: Principles and Prototypes of Science Data Benchmarks
EAGER:SciDatBench:科学数据基准的原理和原型
- 批准号:
2204115 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant














{{item.name}}会员




