SBIR Phase I: Open Machine Learning Competitions with Private Data
SBIR 第一阶段:使用私有数据开放机器学习竞赛
基本信息
- 批准号:2038067
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be to expand access to artificial intelligence (AI) talent and spur innovation to solve hard problems while protecting privacy. Machine learning and AI are bringing transformational change to governments, private companies, and social sector organizations. Yet in the coming years, innovation will be hamstrung by limited access to AI talent. Open innovation, such as machine learning (ML) competitions, provides governments and firms the ability to tap into a global talent pool to solve some of their most pressing and vexing challenges. Yet there is currently an immense barrier to running these competitions: the data must be made available to participants, which can preclude running a competition if the associated data are too sensitive to release due to concerns about privacy, security, or confidentiality. With data talent in increasingly high demand, government agencies, companies, and others have demonstrated a willingness to invest in this fashion. The proposed project develops a method to maintain data privacy at scale. This Small Business Innovation Research (SBIR) Phase I project will develop an end-to-end competition system that provides privacy guarantees for data used to build crowdsourced algorithmic solutions. Open ML challenges typically work by providing participants with training data to learn underlying patterns, then evaluating resulting predictions on unlabeled test data. For many important problems, making training data available in this way violates concerns about privacy or enables abuse. The critical gap is preserving the privacy of training data while enabling participants to build models that can learn from it. This project will bring together recent advances in three of the most promising approaches in privacy-preserving data analysis: homomorphic encryption, federated learning, and differential privacy. Each technique will be developed and tested in a dedicated challenge structure with two core properties: 1) to preserve the privacy of sensitive data; and 2) to ensure competitors are able to get feedback on submitted models during the competition to inform algorithm improvements. Each competition system will result in a set of performance measures, including benchmarked algorithm performance and data privacy guarantees, to assess system feasibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小企业创新研究(SBIR)第一阶段项目的更广泛影响将是扩大对人工智能(AI)人才的获取,并在保护隐私的同时刺激创新,以解决难题。机器学习和人工智能正在给政府、私营公司和社会部门组织带来转型变革。然而,在未来几年,创新将因获得人工智能人才的渠道有限而受到阻碍。开放式创新,如机器学习(ML)竞赛,为政府和企业提供了利用全球人才库的能力,以解决一些最紧迫、最棘手的挑战。然而,目前举办这些比赛有一个巨大的障碍:数据必须提供给参与者,如果相关数据过于敏感,由于对隐私、安全或机密性的担忧而无法发布,这可能会妨碍举办比赛。随着对数据人才的需求越来越高,政府机构、公司和其他机构都表现出在这方面投资的意愿。拟议的项目开发了一种大规模维护数据隐私的方法。这个小企业创新研究(SBIR)第一阶段项目将开发一个端到端竞争系统,为用于构建众包算法解决方案的数据提供隐私保障。开放机器学习挑战通常通过向参与者提供训练数据来学习底层模式,然后在未标记的测试数据上评估结果预测。对于许多重要的问题,以这种方式提供训练数据违反了对隐私的担忧或导致滥用。关键的差距在于保护训练数据的隐私,同时使参与者能够建立可以从中学习的模型。该项目将汇集保护隐私数据分析中三种最有前途的方法的最新进展:同态加密、联邦学习和差分隐私。每种技术都将在具有两个核心属性的专用挑战结构中进行开发和测试:1)保护敏感数据的隐私;2)确保竞争对手能够在竞争期间获得对提交模型的反馈,以告知算法改进。每个竞争系统将产生一套性能指标,包括基准算法性能和数据隐私保证,以评估系统可行性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bull其他文献
On Identifying Questions, Replies, and Non-Replies in Political Interviews
论政治访谈中问题、回答和不回答的识别
- DOI:
10.1177/0261927x94132002 - 发表时间:
1994 - 期刊:
- 影响因子:2.1
- 作者:
Peter Bull - 通讯作者:
Peter Bull
Identification of ATP7B
ATP7B的鉴定
- DOI:
10.1016/b978-0-12-810532-0.00003-3 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Peter Bull;J. Rommens;D. Cox - 通讯作者:
D. Cox
Genomic epidemiology of the current wave of artemisinin resistant malaria
当前青蒿素耐药性疟疾浪潮的基因组流行病学
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Amato;Olivo Miotto;C. Woodrow;Jacob Almagro;I. Sinha;S. Campino;D. Mead;Eleanor Drury;M. Kekre;M. Sanders;A. Amambua;C. Amaratunga;L. Amenga;T. Anderson;V. Andrianaranjaka;T. Apinjoh;E. Ashley;Sarah Auburn;G. Awandare;Vito Baraka;A. Barry;M. F. Boni;S. Borrmann;T. Bousema;O. Branch;Peter Bull;K. Chotivanich;D. Conway;A. Craig;N. Day;A. Djimde;C. Dolecek;A. Dondorp;C. Drakeley;P. Duffy;Diego F Echeverri;T. Egwang;R. Fairhurst;A. Faiz;C. Fanello;T. Hien;A. Hodgson;M. Imwong;D. Ishengoma;Pharath Lim;Chanthap Lon;J. Marfurt;K. Marsh;M. Mayxay;V. Mobegi;O. Mokuolu;J. Montgomery;I. Mueller;M. P. Kyaw;P. Newton;F. Nosten;Rintis Noviyanti;A. Nzila;Harold Ocholla;A. Oduro;M. Onyamboko;J. Ouédraogo;A. Phyo;C. Plowe;R. Price;S. Pukrittayakamee;M. Randrianarivelojosia;P. Ringwald;L. Ruiz;D. Saunders;Alex Shayo;P. Siba;Shannon Takala;Thuy Nguyen Thanh;Vandana Thathy;F. Verra;N. White;Y. Htut;Victoria J Cornelius;Rachel Giacomantonio;Dawn Muddyman;Christa Henrichs;Cinzia Malangone;D. Jyothi;R. Pearson;J. Rayner;G. McVean;K. Rockett;A. Miles;P. Vauterin;Ben Jeffery;M. Manske;J. Stalker;B. MacInnis;D. Kwiatkowski - 通讯作者:
D. Kwiatkowski
“Slipperiness, Evasion, and Ambiguity”
“狡猾、逃避和歧义”
- DOI:
10.1177/0261927x08322475 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Peter Bull - 通讯作者:
Peter Bull
Longevity of the immune response and memory to blood-stage malaria infection.
对血期疟疾感染的免疫反应和记忆的持久性。
- DOI:
10.1007/3-540-29967-x_3 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
A. Achtman;Peter Bull;R. Stephens;J. Langhorne - 通讯作者:
J. Langhorne
Peter Bull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Scaling Up Open Innovation with Crowd Wisdom and Artificial Intelligence (AI) for Smarter and More Sustainable Fashion
SBIR 第一阶段:利用群体智慧和人工智能 (AI) 扩大开放创新,打造更智能、更可持续的时尚
- 批准号:
2223164 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Hydrologic Open Cooling System (HOCS) for low-energy refrigeration
SBIR 第一阶段:用于低能耗制冷的水文开放式冷却系统 (HOCS)
- 批准号:
2223197 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: Open Hardware and Software Platform to Enable Control of IoT Devices for People with Disabilities
SBIR 第二阶段:开放硬件和软件平台,帮助残疾人控制物联网设备
- 批准号:
2136794 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Proof -Of-Concept for Large-Scale and Low-Cost Biomass Production Using an Innovative Open Aquatic Algae Cultivation System (OAACS)
SBIR 第一阶段:使用创新的开放式水藻培养系统 (OAACS) 进行大规模、低成本生物质生产的概念验证
- 批准号:
2213114 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Open Vascular Surgical Training System for Skill Acquisition and Evaluation
SBIR 第一阶段:用于技能获取和评估的开放式血管外科培训系统
- 批准号:
2035945 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Securing open source software supply chain
SBIR 第一阶段:保护开源软件供应链
- 批准号:
2112368 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Leading a Hardware Revolution through Open Source
SBIR 第一阶段:通过开源引领硬件革命
- 批准号:
2013802 - 财政年份:2020
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: Novel Photosensor Technology-Enabling the IceCube Cosmic-Neutrino Experiment (South Pole) to Open a New Window on the Universe
SBIR二期:新型光电传感器技术——使冰立方宇宙中微子实验(南极)打开宇宙新窗口
- 批准号:
1927067 - 财政年份:2019
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Open hardware and software platform to enable configuration and control of IoT devices for people with disabilities
SBIR 第一阶段:开放硬件和软件平台,支持残疾人配置和控制物联网设备
- 批准号:
1939533 - 财政年份:2019
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: An End User Authoring Tool for Open and Intelligent Technology-Enhanced Assessments.
SBIR 第二阶段:用于开放和智能技术增强评估的最终用户创作工具。
- 批准号:
1758301 - 财政年份:2018
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant