CPS: Medium: GOALI: Design Automation for Automotive Cyber-Physical Systems

CPS:中:GOALI:汽车网络物理系统设计自动化

基本信息

项目摘要

This project aims to transform the software development process in modern cars, which are witnessing significant innovation with many new autonomous functions being introduced, culminating in a fully autonomous vehicle. Most of these new features are indeed implemented in software, at the heart of which lies several control algorithms. Such control algorithms operate in a feedback loop, involving sensing the state of the plant or the system to be controlled, computing a control input, and actuating the plant in order to enforce a desired behavior on it. Examples of this range from brake and engine control, to cruise control, automated parking, and to fully autonomous driving. Current development flows start with mathematically designing a controller, followed by implementing it in software on the embedded systems existing in a car. This flow has worked well in the past, where automotive embedded systems were simple – with few processors, communication buses, and simple sensors. The control algorithms were simple as well, and important functions were largely implemented by mechanical subsystems. But modern cars have over 100 processors connected by several miles of cables, and multiple sensors like cameras, radars and lidars, whose data needs complex processing before it can be used by a controller. Further, the control algorithms themselves are also more complex since they need to implement new autonomous features that did not exist before. As a result, both computation, communication, and memory accesses in such a complex hardware/software system can now be organized in many different ways, with each being associated with different tradeoffs in accuracy, timing, and resource requirements. These in turn have considerable impact on control performance and how the control strategy needs to be designed. As a result, the clear separation between designing the controller, followed by implementing it in software in the car, no longer works well. This project aims to develop both the theoretical foundations and the tool support to adapt this design flow to emerging automotive control strategies and embedded systems. This will not only result in more cost-effective design of future cars, but will also help with certifying the implemented controllers, thereby leading to safer autonomous cars. In particular, the goal is to automate the synthesis and implementation of control algorithms on distributed embedded architectures consisting of different types of multicore processors, GPUs, FPGA-based accelerators, different communication buses, gateways, and sensors associated with compute-intensive processing. Starting with specifications of plants, control objectives, controller templates, and a partially-specified implementation architecture, this project seeks to synthesize both controller and implementation architecture parameters that meet all control objectives and resource constraints. Towards this, a variety of techniques from switched control, interface compatibility checking, and scheduling of multi-mode systems – that bring together control theory, real-time systems, program analysis, and mathematical optimization, will be used. In collaboration with General Motors, this project will build a tool chain that integrates controller design tools like Matlab/Simulink with standard embedded systems design and configuration tools. This project will demonstrate the benefits of this new design flow and tool support by addressing a set of challenge problems from General Motors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在改变现代汽车的软件开发过程,现代汽车正在经历重大创新,引入了许多新的自主功能,最终实现了完全自主的汽车。这些新功能中的大多数实际上是在软件中实现的,其核心是几种控制算法。这种控制算法在反馈回路中运行,包括感测被控对象或系统的状态,计算控制输入,并致动被控对象,以便对其实施期望的行为。这方面的示例包括制动和发动机控制,巡航控制,自动停车和完全自主驾驶。目前的开发流程从数学设计控制器开始,然后在汽车中现有的嵌入式系统上以软件实现它。这种流程在过去很有效,当时汽车嵌入式系统很简单--只有很少的处理器、通信总线和简单的传感器。控制算法也很简单,重要功能主要由机械子系统实现。 但现代汽车有100多个处理器,由几英里长的电缆连接,还有多个传感器,如摄像头、雷达和激光雷达,这些数据在被控制器使用之前需要复杂的处理。此外,控制算法本身也更复杂,因为它们需要实现以前不存在的新的自主功能。因此,在这样的复杂硬件/软件系统中的计算、通信和存储器访问现在可以以许多不同的方式组织,其中每一种方式与准确性、定时和资源要求的不同折衷相关联。这些反过来又对控制性能和控制策略的设计有相当大的影响。因此,设计控制器,然后在汽车软件中实现它之间的明确分离不再有效。该项目旨在开发理论基础和工具支持,以适应新兴的汽车控制策略和嵌入式系统的设计流程。这不仅将使未来汽车的设计更具成本效益,而且还将有助于认证所实施的控制器,从而使自动驾驶汽车更安全。具体而言,目标是在分布式嵌入式架构上自动合成和实现控制算法,该架构由不同类型的多核处理器、GPU、基于FPGA的加速器、不同的通信总线、网关和与计算密集型处理相关的传感器组成。从工厂的规格,控制目标,控制器模板和部分指定的实施架构开始,该项目旨在综合控制器和实施架构参数,满足所有控制目标和资源约束。为此,各种技术从切换控制,接口兼容性检查,多模式系统的调度-结合控制理论,实时系统,程序分析和数学优化,将被使用。与通用汽车公司合作,该项目将建立一个工具链,将控制器设计工具(如Matlab/Simulink)与标准嵌入式系统设计和配置工具集成在一起。该项目将通过解决通用汽车公司的一系列挑战性问题来展示这种新的设计流程和工具支持的好处。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perception Computing-Aware Controller Synthesis for Autonomous Systems
  • DOI:
    10.23919/date51398.2021.9474189
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clara Hobbs;Debayan Roy;Parasara Sridhar Duggirala;F. D. Smith;Soheil Samii;James H. Anderson;S. Chakraborty
  • 通讯作者:
    Clara Hobbs;Debayan Roy;Parasara Sridhar Duggirala;F. D. Smith;Soheil Samii;James H. Anderson;S. Chakraborty
Offline and Online Monitoring of Scattered Uncertain Logs Using Uncertain Linear Dynamical Systems
使用不确定线性动力系统对分散的不确定日志进行离线和在线监测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bineet Ghosh;Étienne André
  • 通讯作者:
    Étienne André
Safety-Aware Implementation of Control Tasks via Scheduling with Period Boosting and Compressing
通过周期提升和压缩调度实现控制任务的安全感知
SMT-based Control Safety Property Checking in Cyber-Physical Systems under Timing Uncertainties
时序不确定性下信息物理系统中基于 SMT 的控制安全属性检查
Timing Predictability for SOME/IP-based Service-Oriented Automotive In-Vehicle Networks
基于 SOME/IP 的面向服务的汽车车载网络的时序可预测性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samarjit Chakraborty其他文献

Generating an action notation environment from Montages descriptions
Efficient lossless compression for depth information in traffic scenarios
  • DOI:
    10.1007/s00530-019-00605-z
  • 发表时间:
    2019-02-08
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Qing Rao;Samarjit Chakraborty
  • 通讯作者:
    Samarjit Chakraborty
Performance debugging of Esterel specifications
  • DOI:
    10.1007/s11241-012-9155-z
  • 发表时间:
    2012-05-24
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Lei Ju;Bach Khoa Huynh;Abhik Roychoudhury;Samarjit Chakraborty
  • 通讯作者:
    Samarjit Chakraborty
Modeling buffers with data refresh semantics in automotive architectures
在汽车架构中使用数据刷新语义对缓冲区进行建模
  • DOI:
    10.1145/1879021.1879038
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linh T.X. Phan;Reinhard Schneider;Samarjit Chakraborty;Insup Lee
  • 通讯作者:
    Insup Lee
Environmental Microchanges in WiFi Sensing
WiFi 传感中的环境微小变化

Samarjit Chakraborty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
  • 批准号:
    2333120
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
  • 批准号:
    2212565
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Enabling Scalable Real-Time Certification for AI-Oriented Safety-Critical Systems
CPS:中:GOALI:为面向 AI 的安全关键系统提供可扩展的实时认证
  • 批准号:
    2038855
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Real-Time Computer Vision in Autonomous Vehicles: Real Fast Isn't Good Enough
CPS:中:GOALI:自动驾驶汽车中的实时计算机视觉:真正的快还不够好
  • 批准号:
    1837337
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: GOALI: Adaptive and Flexible Spectrum Optical Networking
NeTS:媒介:协作研究:GOALI:自适应和灵活频谱光网络
  • 批准号:
    1302719
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: GOALI: Adaptive and Flexible Spectrum Optical Networking
NeTS:媒介:协作研究:GOALI:自适应和灵活频谱光网络
  • 批准号:
    1302645
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: GOALI: Methods for Network-Enabled Embedded Monitoring and Control for High-Performance Buildings
CPS:中:协作研究:GOALI:高性能建筑的网络嵌入式监控方法
  • 批准号:
    0931416
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: GOALI: Methods for Network-Enabled Embedded Monitoring and Control for High-Performance Buildings
CPS:中:协作研究:GOALI:高性能建筑的网络嵌入式监控方法
  • 批准号:
    0931870
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CPS: Medium: GOALI: An Architecture Approach to Heterogeneous Verfication of Cyber-Physical Systems
CPS:中:GOALI:网络物理系统异构验证的架构方法
  • 批准号:
    1035800
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: GOALI: Methods for Network-Enabled Embedded Monitoring and Control for High-Performance Buildings
CPS:中:协作研究:GOALI:高性能建筑的网络嵌入式监控方法
  • 批准号:
    0931885
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了