Shape-Morphing Living Composites

可变形的活性复合材料

基本信息

  • 批准号:
    2039425
  • 负责人:
  • 金额:
    $ 41.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Designing Living-Synthetic, Shape-Morphing Composites Non-technical abstractThis award by the Biomaterials Program in the Division of Materials Research, to the University of Texas at Dallas, seeks to design and characterize shape-changing composites comprised of both living cells and non-living materials. Single-celled organisms sense and respond to very small changes in their surroundings, but it is difficult to use these organisms as materials in engineering applications. By comparison, most synthetic materials do not respond to their environment or only respond to very large changes, but the properties of these materials can be readily controlled. This research effort will focus on the synthesis, 3D printing, and characterization of hybrid materials that combine the advantages of both living and non-living components. Specifically, Baker's yeast will be embedded in a hydrogel, a soft material largely comprised of water. The growth of these cells causes the entire material to change in shape. By controlling the genes of the yeast, materials can be built to change shape and produce specific biomolecules after detecting specific, small changes in the environment. These materials may be used for simple sensors capable of detecting and reporting changes in bodily fluids or in the environment. The behavior of these new materials could also enable drug-delivery devices that sense disease states in the gut and respond by delivering treatment to the area. This research will also create opportunities for K-12 students to learn about topics in both biology and materials science. Technical abstractThe objective of the proposed work is to harness the controlled proliferation of microorganisms to create synthetic-living hydrogels capable of programmable shape change. Specifically, Saccharomyces cerevisiae will be embedded in acrylamide hydrogels, and the proliferation of these cells will induce shape change in the composite. The primary advantage of this approach, as compared to engineering purely synthetic, responsive materials, is that genetic engineering and material formulation can be used to program the macroscopic composite response to predetermined and incredibly specific stimuli. This work consists of four research tasks: 1) Quantify local and global mechanical deformation during proliferation-induced shape change of the composite and measure the effects of hydrogel mechanical properties on growth, 2) 3D print synthetic-living composites and measure the effects of geometry and porosity on composite growth, 3) Elucidate the fundamental relationship between dose and response and elucidate the specificity of living composites to metabolites, proteins, and light as stimuli that evoke shape change, and 4) Design hydrogel matrices that respond controllably to enzymes produced by the yeast, enabling feedback control of shape change. The effect of metabolites, stimuli, and proteins produced by the yeast on growth throughout the composite will be measured, thus providing understanding of the fundamental relationships that govern living materials. This work will address a critical need for materials that sense highly specific biochemical or weak physical cues and then respond in a controlled manner. These materials will impact areas of critical national need, including drug-delivery strategies that could be used in the gut and simple biochemical sensors. Research activities will be coupled to outreach efforts for K-12 students on topics including genetics, hydrogels, and yeast. These efforts will be aimed at both increasing participation of underrepresented groups in science careers and dissemination of research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性摘要该奖项由材料研究部的生物材料计划授予德克萨斯大学达拉斯分校,旨在设计和表征由活细胞和非生命材料组成的形状变化复合材料。单细胞生物能够感知周围环境的微小变化并做出反应,但很难将这些生物用作工程应用中的材料。相比之下,大多数合成材料不会对其环境做出反应,或者只对非常大的变化做出反应,但这些材料的性能可以很容易地控制。这项研究工作将集中在混合材料的合成,3D打印和表征上,这些混合材料将联合收割机结合了生物和非生物成分的优点。具体来说,面包酵母将嵌入水凝胶中,水凝胶是一种主要由水组成的柔软材料。这些细胞的生长导致整个材料的形状发生变化。通过控制酵母的基因,可以在检测到环境中特定的微小变化后,构建改变形状并产生特定生物分子的材料。这些材料可用于能够检测和报告体液或环境变化的简单传感器。这些新材料的行为也可以使药物输送设备能够感知肠道中的疾病状态,并通过向该区域提供治疗来做出反应。这项研究还将为K-12学生创造学习生物学和材料科学主题的机会。技术摘要本研究的目的是利用微生物的可控增殖来创造能够可编程改变形状的合成活性水凝胶。具体来说,酿酒酵母将嵌入丙烯酰胺水凝胶中,这些细胞的增殖将诱导复合材料的形状变化。与工程纯合成的响应性材料相比,这种方法的主要优点是基因工程和材料配方可以用于对预定的和令人难以置信的特定刺激的宏观复合响应进行编程。这项工作包括四个研究任务:1)在复合材料的增殖诱导的形状变化期间量化局部和全局机械变形,并测量水凝胶机械性能对生长的影响,2)3D打印合成活性复合材料,并测量几何形状和孔隙率对复合材料生长的影响,3)阐明剂量和反应之间的基本关系,并阐明活性复合物对代谢物、蛋白质和光作为引起形状变化的刺激的特异性,和4)设计可控地响应于由酵母产生的酶的水凝胶基质,使得能够反馈控制形状变化。将测量由酵母产生的代谢物、刺激物和蛋白质对整个复合材料生长的影响,从而提供对支配生命材料的基本关系的理解。这项工作将解决对材料的迫切需求,这些材料可以感知高度特异性的生化或弱物理线索,然后以受控的方式做出反应。这些材料将影响国家关键需求领域,包括可用于肠道和简单生化传感器的药物输送策略。 研究活动将与K-12学生的外展工作相结合,主题包括遗传学,水凝胶和酵母。这些努力的目的是增加代表性不足的群体在科学事业中的参与和研究的传播。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlling shape morphing and cell release in engineered living materials.
控制工程活性材料中的形状变形和细胞释放。
  • DOI:
    10.1016/j.bioadv.2022.213182
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rivera-Tarazona,LauraK;SivaperumanKalairaj,Manivannan;Corazao,Tyler;Javed,Mahjabeen;Zimmern,PhilippeE;Subashchandrabose,Sargurunathan;Ware,TaylorH
  • 通讯作者:
    Ware,TaylorH
Shape-morphing living composites
  • DOI:
    10.1126/sciadv.aax8582
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Laura K. Rivera‐Tarazona;Vandita D Bhat;Hyun Kim;Z. Campbell;T. Ware
  • 通讯作者:
    Laura K. Rivera‐Tarazona;Vandita D Bhat;Hyun Kim;Z. Campbell;T. Ware
4D Printing of Engineered Living Materials
  • DOI:
    10.1002/adfm.202106843
  • 发表时间:
    2021-10-15
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Rivera-Tarazona, Laura K.;Shukla, Tarjani;Ware, Taylor H.
  • 通讯作者:
    Ware, Taylor H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor Ware其他文献

Printable ultra-flexible temperature sensor for thermal mapping of bio-tissue
用于生物组织热成像的可打印超柔性温度传感器
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyuki Yokota;Jonathan Reeder;Yusuke Inoue;Yuki Terakawa;Taylor Ware;Walter Voit;Masaki Sekino and Takao Someya
  • 通讯作者:
    Masaki Sekino and Takao Someya

Taylor Ware的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor Ware', 18)}}的其他基金

Collaborative Research: Sub-Voxel Molecular Patterning of Actuators and Photonic Structures in 3-Dimensional Free-Forms
合作研究:3 维自由形式的执行器和光子结构的亚体素分子图案
  • 批准号:
    2147830
  • 财政年份:
    2022
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Designing Microscale, Shape-Morphing Liquid Crystal Elastomers as Tissue Adhesives
职业:设计微型形状变形液晶弹性体作为组织粘合剂
  • 批准号:
    2041671
  • 财政年份:
    2020
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
Shape-Morphing Living Composites
可变形的活性复合材料
  • 批准号:
    1905511
  • 财政年份:
    2019
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Designing Microscale, Shape-Morphing Liquid Crystal Elastomers as Tissue Adhesives
职业:设计微型形状变形液晶弹性体作为组织粘合剂
  • 批准号:
    1752846
  • 财政年份:
    2018
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Passive RFID Real-Time Temperature-Sensing Based on Programmable Liquid Crystal Elastomers
合作研究:基于可编程液晶弹性体的无源RFID实时温度传感
  • 批准号:
    1711383
  • 财政年份:
    2017
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Microfabrication and Self-Assembly of Shape-Changing Hydrogels with Chromonic Liquid Crystalline Order
合作研究:彩色液晶有序变形水凝胶的微加工和自组装
  • 批准号:
    1663367
  • 财政年份:
    2017
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Morphing变换的空间数据多尺度表达机制研究
  • 批准号:
    41001229
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
  • 批准号:
    2406256
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
Design, Control and Flight Demonstration of Bio-Mimetic Surface Pressure Sensor Array-Equipped Morphing Aircraft
仿生表面压力传感器阵列变形飞机设计、控制与飞行演示
  • 批准号:
    23K17333
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Optimal design of morphing wing structure with static aerodynamic deformation considering aerodynamic variation
考虑气动变化的静态气动变形变形机翼结构优化设计
  • 批准号:
    23KJ1842
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
  • 批准号:
    2228271
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interactions of Ultrasoft Shape-Morphing Membranes
职业:超软变形膜的流固相互作用
  • 批准号:
    2340593
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
  • 批准号:
    2228272
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
STTR Phase I: Active Blade Morphing Control to Improve Efficiency and Reduce Loading for Wind Turbines
STTR 第一阶段:主动叶片变形控制可提高风力涡轮机的效率并减少负载
  • 批准号:
    2151668
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
Optimisation of a variable sweep morphing wingtip
可变后掠变形翼尖的优化
  • 批准号:
    2888183
  • 财政年份:
    2023
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了