High-throughput phenotyping of nitrogen and biomass partitioning of central European wheat cultivars and breeding lines during grain filling in different climatic zones

不同气候带中欧小麦品种和育种系灌浆期间氮和生物量分配的高通量表型

基本信息

项目摘要

The challenge to phenotyping - one of the bottlenecks in breeding research in improvement of agricultural practices - is to develop high-throughput precision phenotyping techniques. To ensure wheat yield stability and grain quality, the key physiological traits for genetic improvement are to obtain high grain protein content without a decrease in grain yield of wheat. Therefore, our hypothesis is that high-throughput spectral phenotyping of plant traits of biomass and grain yield formation over time during grain filling can assess the relationships between Nrem/Nup and sink/source relations to achieve high N use efficiency and to improve selection efficiency for yield and protein content in wheat breeding. The ultimate objective is to obtain sufficient knowledge to identify the potential traits of Nrem (N remobilization), Nup (N uptake), Nsto (N storage) and sink-source relations which control the processes of grain N deposition during grain filling, thereby providing the key physiological traits for genetic improvement of grain protein concentration without affecting grain yield of wheat using high-throughput and cost-effective phenotyping techniques. The specific objectives are: i) to assess the sensitivity of spectral indices and/or other algorithms for detecting genotypic effects on total grain N deposition, Nrem, Nup, Nsto and sink-source relations during the grain filling at optimal soil N levels and under a range of climatic zones; ii) to evaluate the validity of spectral indices and other algorithms as a potential high-throughput phenotyping technique for total grain N deposition, Nrem, Nup, Nsto and sink-source relations; iii) to compare with image-based approaches; and iv) to link spectral indices/best algorithms with the genetic map of the wheat genome allowing a better understanding of the importance of loci for grain yield and N use efficiency of winter wheat during grain filling. Significance: i) This knowledge will ultimately lead to a more rational and effective approach to high-throughput phenotyping using spectral sensors for a better understanding of grain N deposition mechanisms and to find the suitable measures for the desired traits in order to obtain high yielding potential and high N concentrations of winter wheat within the context of climate changes; ii) The successful implementation of high-throughput precision phenotyping technologies in field-oriented breeding will narrow the gap between our current genotyping and phenotyping capabilities; and iii) Plant traits identified in different climatic zones for high yielding potential and high grain protein concentration will meet the challenges ahead, which requires the scale of quantum advances for the physiological changes being seen in future climate changes.
表型鉴定面临的挑战是开发高通量、高精度的表型鉴定技术--这是改良农业实践中育种研究的瓶颈之一。在不降低小麦产量的前提下,获得较高的籽粒蛋白质含量是小麦遗传改良的关键生理性状,是保证小麦稳产优质的关键。因此,我们的假设是,在小麦灌浆过程中,高通量的生物量性状和籽粒产量形成的高通量光谱表型分析可以评估NREM/NUP和库/源关系,从而在小麦育种中获得高的氮素利用效率和提高产量和蛋白质含量的选择效率。最终目的是获得足够的知识,以确定控制籽粒灌浆过程中籽粒氮素沉积过程的N再动员(NREM)、N吸收(Nup)、N贮藏(Nsto)的潜在性状和库源关系,从而为利用高通量和经济高效的表型技术在不影响小麦产量的情况下遗传改良小麦籽粒蛋白质浓度提供关键的生理性状。具体目标是:1)评估光谱指数和/或其他算法的敏感性,以检测在最佳土壤氮素水平和一定气候带下的灌浆过程中,对籽粒总氮沉积、NREM、NUP、NSTO和库源关系的遗传效应;2)评估光谱指数和其他算法作为潜在的高通量表型技术的有效性;3)与基于图像的方法进行比较;以及iv)将光谱指数/最佳算法与小麦基因组的遗传图谱联系起来,以便更好地了解基因座对冬小麦灌浆期间籽粒产量和氮素利用效率的重要性。意义:i)这一认识最终将导致利用光谱传感器进行高通量表型鉴定的更合理和有效的方法,以便更好地了解籽粒氮沉积机理,并为所需性状找到合适的措施,以便在气候变化的背景下获得高产潜力和高氮浓度的冬小麦;ii)高通量精密表型鉴定技术在田间定向育种中的成功实施将缩小我们目前的基因鉴定和表型鉴定能力之间的差距;以及iii)在不同气候带确定的具有高产潜力和高籽粒蛋白质浓度的植物性状将迎接未来的挑战,这需要在未来气候变化中看到的生理变化的量子进步的规模。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Referencing laser and ultrasonic height measurements of barley cultivars by using a herbometre as standard
  • DOI:
    10.1071/cp16238
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Barmeier, Gero;Mistele, Bodo;Schmidhalter, Urs
  • 通讯作者:
    Schmidhalter, Urs
Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs)
  • DOI:
    10.3390/rs9060544
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Gnaedinger, Friederike;Schmidhalter, Urs
  • 通讯作者:
    Schmidhalter, Urs
Mid-season prediction of grain yield and protein content of spring barley cultivars using high-throughput spectral sensing
  • DOI:
    10.1016/j.eja.2017.07.005
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Barmeier, Gero;Hofer, Katharina;Schmidhalter, Urs
  • 通讯作者:
    Schmidhalter, Urs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Urs Schmidhalter其他文献

Professor Dr. Urs Schmidhalter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Urs Schmidhalter', 18)}}的其他基金

Phenotyping complex traits of drought and heat tolerance for future climate-resilient German wheat
对未来气候适应型德国小麦的干旱和耐热性复杂性状进行表型分析
  • 批准号:
    403833702
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulated field environment with combined salt and drought stresses as a platform for phenotyping plant tolerance to salinity
以盐和干旱胁迫相结合的模拟田间环境为植物耐盐性表型分析的平台
  • 批准号:
    117288830
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Integrating deep phenotyping and functional genomics to understand the mechanistic basis of primary lymphatic anomalies
整合深层表型分析和功能基因组学,了解原发性淋巴异常的机制基础
  • 批准号:
    MR/Y013786/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
慢性気道疾患のprecision medicine実現に向けたdeep phenotyping
慢性气道疾病精准医疗的深度表型分析
  • 批准号:
    23K27606
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
  • 批准号:
    2238365
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Deep phenotyping統合解析を用いた肺動脈性肺高血圧症の新規治療開発
利用深度表型整合分析开发肺动脉高压新疗法
  • 批准号:
    23K07647
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven phenotyping of central disorders of hypersomnolence with unsupervised clustering: toward more reliable diagnostic criteria
无监督聚类的数据驱动的中枢性嗜睡症表型分析:寻求更可靠的诊断标准
  • 批准号:
    481046
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Sleep Regulation in C. elegans
线虫睡眠调节机制
  • 批准号:
    10711702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
  • 批准号:
    10724809
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of remission in the intergenerational transmission of alcohol use disorder: Course, context, and offspring outcomes
缓解在酒精使用障碍代际传播中的作用:病程、背景和后代结果
  • 批准号:
    10736096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
  • 批准号:
    10733155
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了