CAREER: FormalDP: Formally Verified, Private, Accurate and Efficient Data Analysis

职业:FormalDP:经过正式验证、私密、准确、高效的数据分析

基本信息

  • 批准号:
    2040249
  • 负责人:
  • 金额:
    $ 48.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Data-driven technology is having an impressive impact on society but privacy concerns restrict the way data can be used and released. Differential privacy has emerged as a leading notion supporting efficient and accurate data analyses that respect privacy. But designing and implementing efficient differentially private data analyses with high utility can be challenging and error prone. Even privacy experts have released code with bugs or designed incorrect algorithms. Programming platforms and formal verification tools can assist data analysts in designing differentially private data analyses without bugs. However, the current approaches have two limitations: first, they support reasoning about privacy but not about accuracy and efficiency which are two other important aspects of data analyses; second, they support reasoning about idealized data analyses but not about their implementations on finite computers. The goal of this project is to overcome these two limitations by developing novel formal verification techniques and tools supporting formal reasoning combining privacy, accuracy, and efficiency guarantees for both data analyses, and their implementations. The results of this project will contribute to develop foundational methods for privacy-preserving technology which can benefit society by improving and promoting safer practices in handling private or sensitive data. Moreover, the project will support educational activities aimed at training students with a global view on data privacy and its practices, and outreach activities aimed at investigating ways in which privacy policies and standards can be impacted by the results of this research.The technical goal of this proposal is the theoretical and technological development of verification techniques and tools that can enable the design of data analyses that are private, accurate, efficient, and with verified implementations. To achieve this goal the project will focus on three concrete directions: first, it will develop formal verification techniques to reason in a formal way about the accuracy of differentially private data analyses; second, it will develop resource analysis techniques to reason about the efficiency of a data analysis in terms of computing time and space, and in terms of the number of needed data samples; third, it will develop reasoning techniques to verify the privacy, accuracy and efficiency of implementations of differentially private algorithms on finite computers. These techniques will be implement as a type-based verification framework, named FormalDP, which will thus support type-based formal reasoning combining privacy, accuracy and efficiency for data analyses and their implementations. The effectiveness of this approach will be assessed through experimental studies about the level of accuracy and efficiency that verified differentially private implementations can achieve.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的技术正在对社会产生令人印象深刻的影响,但隐私问题限制了数据的使用和发布方式。差异隐私已成为支持尊重隐私的高效、准确的数据分析的领先概念。但设计和实施具有高实用性的高效差分隐私数据分析可能具有挑战性且容易出错。即使是隐私专家也发布了存在错误的代码或设计了错误的算法。编程平台和形式验证工具可以帮助数据分析师设计无错误的差分隐私数据分析。然而,当前的方法有两个局限性:首先,它们支持关于隐私的推理,但不支持关于数据分析的另外两个重要方面的准确性和效率的推理;其次,它们支持关于理想化数据分析的推理,但不支持关于它们在有限计算机上的实现的推理。该项目的目标是通过开发新颖的形式验证技术和工具来克服这两个限制,支持形式推理,结合数据分析及其实现的隐私、准确性和效率保证。该项目的结果将有助于开发隐私保护技术的基础方法,该方法可以通过改进和促进处理私人或敏感数据的更安全实践来造福社会。此外,该项目还将支持旨在培训学生对数据隐私及其实践具有全球视野的教育活动,以及旨在调查本研究结果影响隐私政策和标准的方式的外展活动。该提案的技术目标是验证技术和工具的理论和技术开发,从而能够设计私密、准确、高效且经过验证的实施的数据分析。为了实现这一目标,该项目将重点关注三个具体方向:首先,它将开发形式验证技术,以形式化的方式推理差分隐私数据分析的准确性;其次,它将开发资源分析技术,以从计算时间和空间以及所需数据样本的数量方面推断数据分析的效率;第三,它将开发推理技术来验证有限计算机上差分隐私算法实现的隐私性、准确性和效率。这些技术将作为一个名为 FormalDP 的基于类型的验证框架来实现,从而支持基于类型的形式推理,结合数据分析及其实现的隐私性、准确性和效率。这种方法的有效性将通过实验研究来评估,该研究涉及经过验证的差异化私人实施所能达到的准确性和效率水平。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formalizing Algorithmic Bounds in the Query Model in EasyCrypt
在 EasyCrypt 中形式化查询模型中的算法边界
A unifying type-theory for higher-order (amortized) cost analysis
高阶(摊销)成本分析的统一类型理论
On incorrectness logic and Kleene algebra with top and tests
关于不正确逻辑和带有顶和检验的克林代数
Bunched Fuzz: Sensitivity for Vector Metrics
束状模糊:矢量度量的敏感性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    wunder, june;Azevedo de Amorim, Arthur;Baillot, Patrick;Gaboardi, Marco
  • 通讯作者:
    Gaboardi, Marco
The Complexity of Verifying Boolean Programs as Differentially Private
验证布尔程序是否为差分私有的复杂性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Gaboardi其他文献

A Core Quantitative Coeffect Calculus
核心定量协效应微积分
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aloïs Brunel;Marco Gaboardi;Damiano Mazza;Steve Zdancewic
  • 通讯作者:
    Steve Zdancewic
A Program Logic for Union Bounds
联合界限的程序逻辑
  • DOI:
    10.4230/lipics.icalp.2016.107
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Barthe;Marco Gaboardi;B. Grégoire;Justin Hsu;Pierre
  • 通讯作者:
    Pierre
From light logics to type assignments: a case study
从轻逻辑到类型分配:案例研究
  • DOI:
    10.1093/jigpal/jzp019
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Gaboardi;S. D. Rocca
  • 通讯作者:
    S. D. Rocca
A An Implicit Characterization of PSPACE
A PSPACE 的隐式表征
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Gaboardi
  • 通讯作者:
    Marco Gaboardi
Categorical Models for a Semantically Linear Lambda-calculus
语义线性 Lambda 演算的分类模型
  • DOI:
    10.4204/eptcs.22.1
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Gaboardi;M. Piccolo
  • 通讯作者:
    M. Piccolo

Marco Gaboardi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Gaboardi', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Mechanized Cryptographic Reasoning in Separation Logic
协作研究:SaTC:核心:小型:分离逻辑中的机械化密码推理
  • 批准号:
    2314324
  • 财政年份:
    2023
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: DASS: Co-design of law and computer science for privacy in sociotechnical software systems
合作研究:DASS:社会技术软件系统中隐私保护的法律和计算机科学的共同设计
  • 批准号:
    2217679
  • 财政年份:
    2022
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Standard Grant
TWC: Large: Collaborative: Computing Over Distributed Sensitive Data
TWC:大型:协作:分布式敏感数据计算
  • 批准号:
    2040215
  • 财政年份:
    2020
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Programming Tools for Adaptive Data Analysis
SHF:小型:协作研究:自适应数据分析的编程工具
  • 批准号:
    2040222
  • 财政年份:
    2020
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Standard Grant
CAREER: FormalDP: Formally Verified, Private, Accurate and Efficient Data Analysis
职业:FormalDP:经过正式验证、私密、准确、高效的数据分析
  • 批准号:
    1845803
  • 财政年份:
    2019
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Programming Tools for Adaptive Data Analysis
SHF:小型:协作研究:自适应数据分析的编程工具
  • 批准号:
    1718220
  • 财政年份:
    2017
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Standard Grant
TWC: Large: Collaborative: Computing Over Distributed Sensitive Data
TWC:大型:协作:分布式敏感数据计算
  • 批准号:
    1565365
  • 财政年份:
    2016
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Continuing Grant
PrivInfer - Programming Languages for Differential Privacy: Conditioning and Inference
PrivInfer - 用于差异隐私的编程语言:调节和推理
  • 批准号:
    EP/M022358/1
  • 财政年份:
    2015
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: FormalDP: Formally Verified, Private, Accurate and Efficient Data Analysis
职业:FormalDP:经过正式验证、私密、准确、高效的数据分析
  • 批准号:
    1845803
  • 财政年份:
    2019
  • 资助金额:
    $ 48.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了