NSF Convergence Accelerator - Track D: Hidden Water and Hydrologic Extremes: A Groundwater Data Platform for Machine Learning and Water Management
NSF 融合加速器 - 轨道 D:隐藏水和水文极端情况:用于机器学习和水管理的地下水数据平台
基本信息
- 批准号:2040542
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. The broader impact and potential societal benefit of this Convergence Accelerator Phase I project is to utilize artificial intelligence methods such as machine learning (ML) to achieve better water management outcomes that directly benefit society by developing the ability to better plan for and manage extreme events through improved hydrologic forecasting. HydroFrame-ML is motivated by, and structured around, applied solutions for water management planning and decision making. Extreme events like drought and floods have far-reaching societal impacts. They are common, costly and likely to get worse in the future. The project team is partnered with the Bureau of Reclamation, which is the largest wholesale water provider in the country, providing water to more than 31 million people and 10 million acres of farmland. The Bureau of Reclamation will drive use case design and the metrics used to evaluate success in Phase 1, as well as partner in the expansion of the project team for Phase 2. Additionally, the project team will develop hands-on activities and challenges designed to give undergraduates experience in machine learning and data science, in the context of pressing real-world challenges. Aided by the planned addition of a STEM mentorship program partner in Phase 2, the team will build content with the vision of helping to broaden participation of underrepresented students well beyond the timeframe of this project.The proposed project brings together the most physically rigorous national scale groundwater simulations developed through HydroFrame with national leaders in Earth Systems Modeling and water management. By providing end-to-end workflows combining state of groundwater science with operational management tools, HydroFrame-ML will advance both large-scale water management as well as our understanding of how human operations and groundwater interact in extreme events. Their products will provide innovative ways to improve forecasts and in the process will expand our knowledge about the (1) contributions of groundwater to extreme events in managed systems; (2) biases in our current risk-assessment approaches which do not consider groundwater; and (3) potential to improve long-term sustainability by more actively managing groundwater and accounting for groundwater surface water interactions in projections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,以应对国家重要性的挑战,并将在不久的将来为社会提供有价值的成果。这个融合加速器第一阶段项目的更广泛的影响和潜在的社会效益是利用机器学习(ML)等人工智能方法来实现更好的水资源管理成果,通过改进水文预测来开发更好地规划和管理极端事件的能力,从而直接造福社会。 HydroFrame-ML是由水管理规划和决策的应用解决方案驱动并围绕其构建的。干旱和洪水等极端事件会产生深远的社会影响。它们很常见,成本很高,而且将来可能会变得更糟。该项目团队与美国最大的批发水供应商美国垦务局(Bureau of Reclamation)合作,为3100多万人和1000万英亩农田供水。垦务局将推动用例设计和用于评估第1阶段成功的指标,并与第2阶段项目团队的扩展合作。此外,该项目团队将开发实践活动和挑战,旨在让本科生在机器学习和数据科学方面的经验,在紧迫的现实挑战的背景下。在第二阶段计划增加STEM导师计划合作伙伴的帮助下,该团队将构建内容,帮助扩大代表性不足的学生的参与,远远超出该项目的时间范围。拟议的项目汇集了最严格的物理国家规模的地下水模拟,通过HydroFrame开发,与地球系统建模和水管理的国家领导人。通过提供将地下水科学与运营管理工具相结合的端到端工作流程,HydroFrame-ML将推进大规模水资源管理以及我们对人类活动和地下水在极端事件中如何相互作用的理解。他们的产品将提供改进预测的创新方法,并在此过程中扩大我们对以下方面的了解:(1)地下水对管理系统中极端事件的贡献;(2)我们目前不考虑地下水的风险评估方法中的偏见;(3)改善长期通过更积极地管理地下水和在预测中考虑地下水与地表水的相互作用,长期可持续发展。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Physics-Informed, Machine Learning Emulator of a 2D Surface Water Model: What Temporal Networks and Simulation-Based Inference Can Help Us Learn about Hydrologic Processes
- DOI:10.3390/w13243633
- 发表时间:2021-12
- 期刊:
- 影响因子:3.4
- 作者:R. Maxwell;L. Condon;Peter Melchior
- 通讯作者:R. Maxwell;L. Condon;Peter Melchior
Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML
- DOI:10.3390/w13233393
- 发表时间:2021-12
- 期刊:
- 影响因子:3.4
- 作者:Hoang Tran;E. Leonarduzzi;Luis De la Fuente;R. B. Hull;Vineet Bansal;Calla Chennault;P. Gentine;Peter Melchior;L. Condon;R. Maxwell
- 通讯作者:Hoang Tran;E. Leonarduzzi;Luis De la Fuente;R. B. Hull;Vineet Bansal;Calla Chennault;P. Gentine;Peter Melchior;L. Condon;R. Maxwell
Sandtank-ML: An Educational Tool at the Interface of Hydrology and Machine Learning
Sandtank-ML:水文学和机器学习接口的教育工具
- DOI:10.3390/w13233328
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Gallagher, Lisa K.;Williams, Jill M.;Lazzeri, Drew;Chennault, Calla;Jourdain, Sebastien;O’Leary, Patrick;Condon, Laura E.;Maxwell, Reed M.
- 通讯作者:Maxwell, Reed M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Condon其他文献
Correction to: Promoting healthy teenage behaviour across three European countries through the use of a novel smartphone technology platform, PEGASO fit for future: study protocol of a quasi-experimental, controlled, multi-Centre trial
- DOI:
10.1186/s12911-021-01686-5 - 发表时间:
2021-11-30 - 期刊:
- 影响因子:3.800
- 作者:
Elisa Puigdomenech;Anne Martin;Alexandra Lang;Fulvio Adorni;Santiago Felipe Gomez;Brian McKinstry;Federica Prinelli;Laura Condon;Rajeeb Rashid;Maurizio Caon;Sarah Atkinson;Claudio L. Lafortuna;Valentina Ciociola;Janet Hanley;Lucy McCloughan;Conxa Castell;Mireia Espallargues - 通讯作者:
Mireia Espallargues
British Journal of General Practice Introducing new genetic testing with case finding for familial hypercholesterolaemia in primary care: qualitative study of patient and health professional experience
英国全科医学杂志在初级保健中引入新的基因检测和家族性高胆固醇血症病例发现:患者和健康专业经验的定性研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Academic Fellow;Laura Condon - 通讯作者:
Laura Condon
Laura Condon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Condon', 18)}}的其他基金
Track D: Hidden Water and Extreme Events: HydroGEN, A Physically Rigorous Machine Learning Platform for Hydrologic Scenario Generation
轨道 D:隐藏的水和极端事件:HydroGEN,一个用于水文情景生成的物理严格的机器学习平台
- 批准号:
2134892 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
CAREER: The Role of Groundwater Storage in Earth System Dynamics; Research to Improve Understanding of Current Hydrologic Regimes and Future Climate Response
职业:地下水储存在地球系统动力学中的作用;
- 批准号:
1945195 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: Sustainability in the Food-Energy-Water nexus; integrated hydrologic modeling of tradeoffs between food and hydropower in large scale Chinese and US basins
合作研究:食品-能源-水关系的可持续性;
- 批准号:
1855912 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: NSCI : Computational and data innovation implementing a national community hydrologic modeling framework for scientific discovery
合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现
- 批准号:
1835794 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Sustainability in the Food-Energy-Water nexus; integrated hydrologic modeling of tradeoffs between food and hydropower in large scale Chinese and US basins
合作研究:食品-能源-水关系的可持续性;
- 批准号:
1805094 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant