NSF Convergence Accelerator Track D America's Water Risk: Water System Data Pooling for Climate Vulnerability Assessment and Warning System

NSF 融合加速器 Track D 美国水风险:气候脆弱性评估和预警系统的水系统数据池

基本信息

  • 批准号:
    2040613
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. This project on Water System Data Pooling for Climate Vulnerability Assessment and Warning System addresses a major gap in the resiliency of America's Water Supply, viz., resiliency to climate variability and change, especially focusing on the vulnerability of thousands of smaller utilities in the United States that may lack the financial wherewithal and technical capacity to analyze these risks and assess their impact on operations. This project establishes a convergence research agenda by bringing together experts in water systems, climate science, AI technologies, emulation models and software development for the conceptual design, development, and sharing of Artificial Intelligence (AI) and Machine Learning (ML) models to quantify America's water supply risk at the level of water utilities and their regulatory state and federal agencies. The aggregated data sources and scalable models for climate and water risk analyses will be made available and accessible to all communities interested in this information. The project employs AI-based techniques to facilitate the exploration of climate observations, climate model simulations and corresponding water system response to help create breakthroughs in our understanding of water supply risk. The models developed will assist in the strategic planning and operations of water systems in the face of an increasing frequency of floods and droughts under climate change and aging infrastructure conditions—factors that constitute significant risks to the nation’s safe supply of water. A cloud-based, multi-scale AI-enabled modeling, and model and data sharing, platform will be developed to support user-centric analyses for the water supply industry. The platform provides multiscale modeling for feature identification, spatiotemporal modeling and forecasting, functional dependence, inverse problems and transfer learning. Physics-based models as well as AI models will be explored in this context. A diverse set of data sources will be used, including national-scale water data will along with utility-collected data. The outputs will be responsive to identified user needs and will become a community data and modeling resource. A deep collaboration with industry partners via the Columbia Water Center’s America’s Water initiative and through the University of Massachusetts’s Water Innovation Network for Sustainable Small Systems guides this process. A broad range of organizations and their constituents will be engaged via webinars and on-site training and demonstrations about the platform. A particular focus of this effort is on organizations and representatives of underrepresented communities that are especially vulnerable to climate driven disruption. Educational materials will be targeted towards users from such communities with the goal of developing additional trained individuals locally who could support the use and interpretation of ML tools for water risk analysis in a local system context. Outreach activities will be especially targeted to the smaller water utilities who may be resource constrained and can, thus, benefit from the shared platform that will be created.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感、以团队为基础的多学科努力,以应对国家重要性的挑战,并将在不久的将来产生对社会有价值的成果。这个针对气候脆弱性评估和预警系统的水系统数据池项目解决了美国供水弹性方面的一个主要缺口,即对气候变化和变化的弹性,特别是关注美国数千家规模较小的公用事业公司的脆弱性,这些公用事业公司可能缺乏必要的资金和技术能力来分析这些风险并评估其对运营的影响。该项目通过汇集水系统、气候科学、人工智能技术、仿真模型和软件开发方面的专家,为人工智能(AI)和机器学习(ML)模型的概念设计、开发和共享建立了一个融合研究议程,以量化美国水务公司及其监管州和联邦机构层面的供水风险。气候和水风险分析的汇总数据来源和可伸缩模型将提供给所有对此信息感兴趣的社区。该项目采用基于人工智能的技术来促进气候观测、气候模型模拟和相应的水系统响应的探索,以帮助我们在理解供水风险方面取得突破。在气候变化和基础设施条件老化的情况下,面对日益频繁的洪水和干旱,开发的模型将有助于水系统的战略规划和运行--这些因素对国家的安全供水构成重大风险。将开发一个基于云的、支持多尺度人工智能的建模、模型和数据共享平台,以支持以用户为中心的自来水行业分析。该平台提供了用于特征识别、时空建模和预测、函数依赖、反问题和迁移学习的多尺度建模。在此背景下,将探讨基于物理的模型以及人工智能模型。将使用一套不同的数据源,包括国家规模的水数据以及公用事业收集的数据。这些产出将对已确定的用户需求作出反应,并将成为社区数据和建模资源。通过哥伦比亚水中心的美国水倡议和马萨诸塞大学的可持续小系统水创新网络,与行业合作伙伴的深入合作指导着这一过程。将通过网络研讨会和关于该平台的现场培训和演示,让广泛的组织及其成员参与进来。这一努力的一个特别重点是那些特别容易受到气候驱动的干扰的代表人数不足的社区的组织和代表。教育材料将面向这些社区的用户,目的是在当地培养更多受过培训的人,他们能够支持在当地系统范围内使用和解释最大限度地利用水风险分析工具。外展活动将特别针对规模较小的水务公司,他们可能资源有限,因此可以从将创建的共享平台中受益。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing the Physical Realism of Deep Learning Hydrologic Model Projections Under Climate Change
  • DOI:
    10.1029/2022wr032123
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    S. Wi;S. Steinschneider
  • 通讯作者:
    S. Wi;S. Steinschneider
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Upmanu Lall其他文献

Water allocation for multiple uses based on probabilistic reservoir inflow forecasts
基于概率水库流入预测的多用途水分配
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Arumugam;Ashish Sharma;Upmanu Lall
  • 通讯作者:
    Upmanu Lall
Variability patterns of the annual frequency and timing of low streamflow days across the United States and their linkage to regional and large‐scale climate
美国低水流日的年频率和时间的变化模式及其与区域和大尺度气候的联系
  • DOI:
    10.1002/hyp.13422
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. P. Poshtiri;I. Pal;Upmanu Lall;P. Naveau;E. Towler
  • 通讯作者:
    E. Towler
Modeling Irrigated Area to Increase Water, Energy, and Food Security in Semiarid India
模拟灌溉区以提高半干旱印度的水、能源和粮食安全
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Siegfried;S. Sobolowski;P. Raj;R. Fishman;V. Vásquez;K. Narula;Upmanu Lall;V. Modi
  • 通讯作者:
    V. Modi
SUBJECT II CLIMATE CHANGE-ITS IMPACT ON AGRICULTURE PRODUCTIVITY AND LIVELIHOOD: THE POLICY RESPONSE Climate Change Impact and Management Strategies for Sustainable Water-Energy-Agriculture Outcomes in Punjab
主题二 气候变化——对农业生产力和生计的影响:政策应对 气候变化影响和旁遮普邦可持续水-能源-农业成果的管理策略
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Vatta;Upmanu Lall
  • 通讯作者:
    Upmanu Lall
AnL 1 smoothing spline algorithm with cross validation
  • DOI:
    10.1007/bf02109421
  • 发表时间:
    1993-08-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Ken W. Bosworth;Upmanu Lall
  • 通讯作者:
    Upmanu Lall

Upmanu Lall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Upmanu Lall', 18)}}的其他基金

Engaging Young Black and Latino Students in Data Science Through Water Security
通过水安全让年轻的黑人和拉丁裔学生参与数据科学
  • 批准号:
    2048958
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Belmont Forum Collaborative Research:Data-driven Disaster Response Systems Dependent on Time of Day, Season and Location for Megacities
贝尔蒙特论坛合作研究:依赖于一天中的时间、季节和位置的特大城市数据驱动的灾难响应系统
  • 批准号:
    2022720
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
WSC-Category 3 Collaborative: America's Water - The Changing Landscape of Risk, Competing Demands and Climate
WSC-Category 3 协作:美国水 - 风险、竞争需求和气候的变化格局
  • 批准号:
    1360446
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: Development of Adaptable Web Modules to Stimulate Active Learning in Hydrology using Data and Model Simulations
协作研究:开发适应性网络模块,利用数据和模型模拟促进水文学主动学习
  • 批准号:
    1123039
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Diagnosing the Climatic Causes and Consequences of Snow Depth Variability
诊断雪深变化的气候原因和后果
  • 批准号:
    0808975
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Attracting and Retaining Undergraduates to Engineer the Built Environment through Instructional & Technological Innovation
通过教学吸引和留住本科生来设计建筑环境
  • 批准号:
    0212218
  • 财政年份:
    2002
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Workshop on Developing a N. American Hydrologic Data Library, Spring 2001
开发北美水文数据库研讨会,2001 年春季
  • 批准号:
    0110561
  • 财政年份:
    2001
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Interannual and Interdecadal Climate Variations of Floods in the Western United States
美国西部洪水的年际和年代际气候变化
  • 批准号:
    0196386
  • 财政年份:
    2000
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Interannual and Interdecadal Climate Variations of Floods in the Western United States
美国西部洪水的年际和年代际气候变化
  • 批准号:
    9973125
  • 财政年份:
    1999
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
(WEAVE) Changing Seasons? Detecting and Understanding Climate Change
(编织)季节变化?
  • 批准号:
    9720134
  • 财政年份:
    1997
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了