NSF Convergence Accelerator Track D: Intelligent Surveillance Platform for Damage Detection and Localization of Civil Infrastructure
NSF 融合加速器轨道 D:用于民用基础设施损坏检测和定位的智能监控平台
基本信息
- 批准号:2040665
- 负责人:
- 金额:$ 76.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. The broader impact and potential societal benefit of this Convergence Accelerator Phase I project is to reduce the societal and economic impact of aging, deterioration, and extreme events on civil infrastructure by facilitating widespread monitoring and condition assessment of constructed structures. Reliable structural health monitoring tools are necessary for prioritizing maintenance and repair decisions regarding the nation’s aging infrastructure. Development of accurate, field-calibrated damage detection tools is needed to reduce the theory-to-practice gap. In turn, this project will promote the wellbeing of the community by reducing the societal and economic impact of aging, deterioration, and extreme events on civil infrastructure. The envisioned work requires diverse perspectives from multiple disciplines, and partnerships crossing organizational, institutional, and disciplinary boundaries.This project aims to creatively integrate advances in Machine Learning (ML) and pattern recognition disciplines with physics-based reasoning to develop a novel, accurate, field-calibrated, and verified computational platform for in-situ monitoring of civil infrastructure. The main deliverable of this two-phased project is an intelligent computational platform consisting of data and algorithms for video-based damage detection and monitoring of civil engineering structures. Phase I will focus on the selection of thebenchmark structures, collection of data, and the development of a prototype of the platform, which will be field calibrated in Phase II. By the end of Phase II, the project team intend to have further developed and field-calibrated the computational platform integrating the ML model with a video analytics module, which will be implemented on selected benchmark structures, and have prepared user manuals and educational materials for end-users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,以应对国家重要性的挑战,并将在不久的将来为社会提供有价值的成果。融合加速器第一阶段项目的更广泛影响和潜在社会效益是通过促进对已建结构的广泛监测和状况评估,减少老化、退化和极端事件对民用基础设施的社会和经济影响。可靠的结构健康监测工具对于优先考虑国家老化基础设施的维护和维修决策是必要的。精确的,现场校准的损伤检测工具的发展是必要的,以减少理论与实践的差距。反过来,该项目将通过减少老龄化、恶化和极端事件对民用基础设施的社会和经济影响,促进社区的福祉。该项目旨在创造性地将机器学习(ML)和模式识别学科的进步与基于物理的推理相结合,开发一种新颖、准确、现场校准和验证的计算平台,用于民用基础设施的现场监测。这个分两个阶段的项目的主要成果是一个智能计算平台,包括用于土木工程结构的基于视频的损伤检测和监测的数据和算法。第一阶段将侧重于选择基准结构、收集数据和开发平台原型,并将在第二阶段进行现场校准。到第二阶段结束时,项目团队打算进一步开发和现场校准将ML模型与视频分析模块集成的计算平台,该平台将在选定的基准结构上实施,并编写了用户手册和教育材料,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards an AI-Driven Platform for Damage Detection in Civil Infrastructure: Understanding Benefits and Stakeholder Needs
建立人工智能驱动的民用基础设施损坏检测平台:了解利益和利益相关者的需求
- DOI:10.1061/9780784484777.036
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Marin-Artieda, Claudia;Alexander, Quincy;Tezcan, Jale;Whiteman, Michael
- 通讯作者:Whiteman, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Marin其他文献
Síndrome de Stevens-Johnson asociado a fenitoína en una paciente colombiana con síndrome convulsivo focal
史蒂文斯-约翰逊综合症与哥伦比亚病人和局灶性惊厥综合症有关
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Camilo Domínguez Domínguez;Javier Fernando Bonilla Briceño;Claudia Marin;Carlos Alberto Calderón Ospina - 通讯作者:
Carlos Alberto Calderón Ospina
Leveraging Computer Vision for Transportation Infrastructure Health Monitoring
利用计算机视觉进行交通基础设施健康监测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Claudia Marin;Ogheneruona Akpareva;Stephen Arhin - 通讯作者:
Stephen Arhin
Claudia Marin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Marin', 18)}}的其他基金
CAREER: Passive Seismic Protective Systems for Nonstructural Systems and Components in Multistory Building
职业:多层建筑非结构系统和组件的被动地震防护系统
- 批准号:
1150462 - 财政年份:2012
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 76.45万 - 项目类别:
Standard Grant