NSF Convergence Accelerator Track D: Artificial Intelligence and Community Driven Wildland Fire Innovation via a WIFIRE Commons Infrastructure for Data and Model Sharing
NSF 融合加速器轨道 D:通过 WIFIRE 共享基础设施实现数据和模型共享,人工智能和社区驱动的野地火灾创新
基本信息
- 批准号:2040676
- 负责人:
- 金额:$ 91.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. The broader impact and potential societal benefit of this Convergence Accelerator Phase I project is to create the WIFIRE Commons, a data-driven, artificial intelligence (AI) enabled and model-based scientific approach that ultimately aims to limit and even prevent the devastating effects of wildfires by using advanced technologies to support fire mitigation, preparedness, response, and recovery. The combination of wildfire data, AI and the physics of fire behavior in the main design of WIFIRE Commons drives multidisciplinary collaboration and engagement with educators, municipal leaders, and fire managers to ensure the Commons is designed for translational use. Data and model sharing are core to the effort, as is strategic partnerships and close collaboration with the private and public sectors. The project team includes educators from Hispanic-serving institutions and advocates for increasing participation of women in the fire workforce and data science fields. In addition, WIFIRE Commons’ AI Gateway machine learning, scalable computing and interactive geospatial analysis tools will be applicable to any area that can benefit from modeling.This project seeks to undertake convergence research on AI integrated wildland fire research and response, and to build a framework we call the WIFIRE Commons for using AI to enable innovative optimization of the evolving combinations of physics-based wildfire models and heterogeneous data sets used to monitor and predict wildfires in real-time. The Phase I effort will contribute toward this goal through a design-thinking approach with five streams of deliverables: 1) community convergence workshops, 2) a prototype data and model commons framework, 3) use-inspired case studies to demonstrate the proposed AI innovations, 4) prototyping of educational, outreach, and public information activities; and 5) Phase II planning. The long-term vision is to create a sustainable and open source AI-driven data and model commons to facilitate and leverage collaborations to “harness AI innovations” supporting use-inspired societal and scientific wildland fire applications. Driven by design-thinking and building upon prior research by our team members (WIFIRE, MINT, QUIC-fire), the proposed WIFIRE Commons convergence research and data and model sharing framework will enable development of novel artificial intelligence techniques and reusable models that can be utilized in many applications. This Commons infrastructure will catalog, curate and integrate data and models for AI-driven fire science, maintain open programmatic access to data in a cloud-compatible form that can be integrated into the AI process through a gateway interface, and ensure provenance of data and models over time. This AI-enabled smart data/model integration will transform the agility of science based wildland fire decision making, allowing for new kinds of models and data to be assimilated rapidly and allowing an expanding base of users to understand levels of uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感、以团队为基础的多学科努力,以应对国家重要性的挑战,并将在不久的将来产生对社会有价值的成果。这一融合加速器第一阶段项目的更广泛影响和潜在社会效益是创建WIFIRE Commons,这是一种数据驱动、人工智能(AI)启用和基于模型的科学方法,最终旨在通过使用先进技术支持火灾缓解、准备、响应和恢复来限制甚至防止野火的破坏性影响。在WIFIRE Commons的主要设计中,将野火数据、人工智能和火灾行为物理结合在一起,推动了与教育工作者、市政领导人和消防管理人员的多学科合作和参与,以确保Commons设计为可翻译使用。数据和模型共享是这一努力的核心,与私营和公共部门的战略伙伴关系和密切合作也是如此。该项目团队包括来自拉美裔服务机构的教育工作者,以及倡导增加女性在消防劳动力和数据科学领域的参与。此外,WIFIRE Commons的AI Gateway机器学习、可扩展计算和交互式地理空间分析工具将适用于任何可以从建模中受益的领域。该项目旨在对集成了AI的野火研究和响应进行融合研究,并构建一个我们称为WIFIRE Commons的框架,用于使用人工智能来实现对基于物理的野火模型和用于实时监测和预测野火的异类数据集的不断演变的组合的创新优化。第一阶段的工作将通过设计思维方法为这一目标做出贡献,提供五种可交付成果:1)社区融合研讨会,2)原型数据和模型公共框架,3)受使用启发的案例研究,以演示拟议的人工智能创新,4)教育、外展和公共信息活动的原型设计,以及5)第二阶段规划。其长期愿景是创建一个可持续和开源的人工智能驱动的数据和模型Commons,以促进和利用协作,以“利用人工智能创新”来支持受使用启发的社会和科学荒野火灾应用。在设计思维的推动下,在我们团队成员(WIFIRE、MINT、Quic-Fire)先前研究的基础上,拟议的WIFIRE Commons融合研究以及数据和模型共享框架将使可用于许多应用的新型人工智能技术和可重用模型的开发成为可能。这一公共基础设施将对人工智能驱动的火灾科学的数据和模型进行编目、管理和集成,以云兼容的形式保持对数据的开放式编程访问,该形式可以通过网关接口集成到人工智能过程中,并确保数据和模型的出处。这种支持人工智能的智能数据/模型集成将改变基于科学的野地火灾决策的灵活性,允许快速吸收新型模型和数据,并允许不断扩大的用户基础了解不确定性水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilkay Altintas其他文献
Sex Differences in the Variability of Physical Activity Measurements Across Multiple Timescales Recorded by a Wearable Device: Observational Retrospective Cohort Study
可穿戴设备记录的多时间尺度下身体活动测量变异性的性别差异:观察性回顾性队列研究
- DOI:
10.2196/66231 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Kristin J Varner;Lauryn Keeler Bruce;Severine Soltani;Wendy Hartogensis;Stephan Dilchert;Frederick M Hecht;Anoushka Chowdhary;Leena Pandya;Subhasis Dasgupta;Ilkay Altintas;Amarnath Gupta;Ashley E Mason;Benjamin L Smarr - 通讯作者:
Benjamin L Smarr
Correction: Variability of temperature measurements recorded by a wearable device by biological sex
- DOI:
10.1186/s13293-023-00568-x - 发表时间:
2023-11-13 - 期刊:
- 影响因子:5.100
- 作者:
Lauryn Keeler Bruce;Patrick Kasl;Severine Soltani;Varun K. Viswanath;Wendy Hartogensis;Stephan Dilchert;Frederick M. Hecht;Anoushka Chowdhary;Claudine Anglo;Leena Pandya;Subhasis Dasgupta;Ilkay Altintas;Amarnath Gupta;Ashley E. Mason;Benjamin L. Smarr - 通讯作者:
Benjamin L. Smarr
Ilkay Altintas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilkay Altintas', 18)}}的其他基金
Student and Early Career Support: 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2023)
学生和早期职业支持:第 23 届 IEEE/ACM 国际集群、云和互联网计算研讨会 (CCGrid 2023)
- 批准号:
2317547 - 财政年份:2023
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
Planning: FIRE-PLAN: Community Building Toward an Immersive Forest Network to Catalyze Wildland Fire Solutions and Training
规划:FIRE-PLAN:建立沉浸式森林网络的社区,以促进荒地火灾解决方案和培训
- 批准号:
2341120 - 财政年份:2023
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
National Data Platform Pilot: Services for Equitable Open Access to Data
国家数据平台试点:公平开放数据访问服务
- 批准号:
2333609 - 财政年份:2023
- 资助金额:
$ 91.6万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: FOUNT: Scaffolded, Hands-On Learning for a Data-Centric Future
协作研究:网络培训:实施:媒介:FOUNT:支架式实践学习,打造以数据为中心的未来
- 批准号:
2230081 - 财政年份:2022
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator – Track D: Artificial Intelligence and Community Driven Wildland Fire Innovation via a WIFIRE Commons Infrastructure for Data and Model Sharing
NSF 融合加速器 — 轨道 D:通过 WIFIRE 共享基础设施实现数据和模型共享,人工智能和社区驱动的野地火灾创新
- 批准号:
2134904 - 财政年份:2021
- 资助金额:
$ 91.6万 - 项目类别:
Cooperative Agreement
Collaborative Research: Framework: Software: NSCI : Computational and Data Innovation Implementing a National Community Hydrologic Modeling Framework for Scientific Discovery
合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现
- 批准号:
1835855 - 财政年份:2018
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
Hazards SEES Type 2: WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires
Hazards SEES 类型 2:WIFIRE:可扩展的数据驱动型野火监控、动态预测和弹性网络基础设施
- 批准号:
1331615 - 财政年份:2013
- 资助金额:
$ 91.6万 - 项目类别:
Continuing Grant
EAGER: Interoperability Testbed - Assessing a Layered Architecture for Integration of Existing Capabilities
EAGER:互操作性测试台 - 评估用于集成现有功能的分层架构
- 批准号:
1239623 - 财政年份:2012
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 91.6万 - 项目类别:
Continuing Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 91.6万 - 项目类别:
Standard Grant