FAI: Organizing Crowd Audits to Detect Bias in Machine Learning
FAI:组织群体审计以检测机器学习中的偏差
基本信息
- 批准号:2040942
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning development teams often struggle to detect and mitigate harmful stereotypes due to their own blind spots, particularly when ML systems are deployed globally. These kinds of representation harms cannot be easily quantified using today’s automated techniques or fairness metrics, and require knowledge of specific social, cultural, and historical contexts. The researchers team will develop a crowd audit service that harnesses the power of volunteers and crowd workers to identify specific cases of bias and unfairness in machine learning systems, generalize those to systematic failures, and synthesize and prioritize these findings in a form that is readily actionable by development teams. Success in the research team’s work will lead to new ways to identify bias and unfairness in machine learning systems, thus improving trust and reliability in these systems. The research team’s work will be shared through a public web site that will make it easy for journalists, policy makers, researchers, and the public at large to engage in understanding algorithmic bias as well as participating in finding unfair behaviors in machine learning systems. This project will explore three major research questions. The first is investigating new techniques for recruiting and incentivizing participation from a diverse crowd. The second is developing new and effective forms of guidance for crowd workers for finding instances and generalizing instances of bias. The third is designing new ways of synthesizing findings from the crowd so that development teams can understand and productively act on. The outputs of this research will include developing a taxonomy of harms; designing and evaluating new kinds of tools to help the crowd tag, discuss, and generalize representation harms; synthesizing new design practices in algorithmic socio-technical platforms in which these platforms can provide users with the opportunity to identify and report observed unfair system behaviors via the platform itself; and gathering new data sets consisting of unfair ML system behaviors identified by the crowd. These datasets will support future research into the design of crowd auditing systems, the nature of representation harms in ML systems, and for future ML teams working on similar kinds of systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习开发团队经常因为自己的盲点而难以检测和减轻有害的刻板印象,特别是当机器学习系统在全球部署时。使用当今的自动化技术或公平指标,这些类型的代表性伤害无法轻易量化,并且需要特定的社会、文化和历史背景知识。研究团队将开发一种群体审计服务,利用志愿者和群体工作人员的力量来识别机器学习系统中的偏见和不公平的具体案例,将其归纳为系统故障,并以开发团队易于操作的形式综合和优先考虑这些发现。研究小组工作的成功将导致识别机器学习系统中的偏见和不公平的新方法,从而提高这些系统的信任和可靠性。研究小组的工作将通过一个公共网站分享,这将使记者、政策制定者、研究人员和广大公众更容易理解算法偏见,并参与发现机器学习系统中的不公平行为。这个项目将探讨三个主要的研究问题。首先是研究招募和激励不同人群参与的新技术。第二是为群体工作者提供新的有效指导形式,以发现偏见实例并归纳偏见实例。第三是设计新的方法来综合来自人群的发现,以便开发团队能够理解并有效地采取行动。这项研究的产出将包括制定危害分类;设计和评估新类型的工具,以帮助人群标记、讨论和概括表征危害;在算法社会技术平台中综合新的设计实践,这些平台可以为用户提供通过平台本身识别和报告观察到的不公平系统行为的机会;并收集由人群识别的不公平ML系统行为组成的新数据集。这些数据集将支持未来对人群审计系统设计的研究,ML系统中表示危害的本质,以及未来在类似系统上工作的ML团队。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Frontline Workers’ and Unhoused Individuals’ Perspectives on AI Used in Homeless Services
- DOI:10.1145/3544548.3580882
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Tzu-Sheng Kuo;Hong Shen;Jisoo Geum;N. Jones;Jason I. Hong;Haiyi Zhu;Kenneth Holstein
- 通讯作者:Tzu-Sheng Kuo;Hong Shen;Jisoo Geum;N. Jones;Jason I. Hong;Haiyi Zhu;Kenneth Holstein
"Give Everybody [..] a Little Bit More Equity": Content Creator Perspectives and Responses to the Algorithmic Demonetization of Content Associated with Disadvantaged Groups
“给每个人[..]多一点公平”:内容创作者对弱势群体相关内容的算法非货币化的看法和回应
- DOI:10.1145/3555149
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kingsley, Sara;Sinha, Proteeti;Wang, Clara;Eslami, Motahhare;Hong, Jason I.
- 通讯作者:Hong, Jason I.
Everyday Algorithm Auditing: Understanding the Power of Everyday Users in Surfacing Harmful Algorithmic Behaviors
日常算法审计:了解日常用户在发现有害算法行为方面的力量
- DOI:10.1145/3479577
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shen, Hong;DeVos, Alicia;Eslami, Motahhare;Holstein, Kenneth
- 通讯作者:Holstein, Kenneth
Toward User-Driven Algorithm Auditing: Investigating users’ strategies for uncovering harmful algorithmic behavior
迈向用户驱动的算法审计:调查用户发现有害算法行为的策略
- DOI:10.1145/3491102.3517441
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:DeVos, Alicia;Dhabalia, Aditi;Shen, Hong;Holstein, Kenneth;Eslami, Motahhare
- 通讯作者:Eslami, Motahhare
Participation and Division of Labor in User-Driven Algorithm Audits: How Do Everyday Users Work together to Surface Algorithmic Harms?
用户驱动的算法审计的参与和分工:日常用户如何共同揭露算法危害?
- DOI:10.1145/3544548.3582074
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Rena;Kingsley, Sara;Fan, Chelsea;Sinha, Proteeti;Wai, Nora;Lee, Jaimie;Shen, Hong;Eslami, Motahhare;Hong, Jason
- 通讯作者:Hong, Jason
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hong其他文献
What is user-centered design?
- DOI:
10.14219/jada.archive.2007.0319 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:
- 作者:
Titus K.L. Schleyer;Thankam P. Thyvalikakath;Jason Hong - 通讯作者:
Jason Hong
Jarosite Occurrences in the MIL 03346 Nakhlite: Implications for Water on Mars
MIL 03346 Nakhlite 中出现黄钾铁矾:对火星上的水的影响
- DOI:
10.7939/r3rq19 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jason Hong - 通讯作者:
Jason Hong
Association Between Premorbid Metabolic Syndrome and Coronary Arterial Stenosis: Results from One Medical Center in Taiwan.
病前代谢综合征与冠状动脉狭窄之间的关联:来自台湾一家医疗中心的结果。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Jason Hong;Lee;M. Tsou;B. Chang - 通讯作者:
B. Chang
Columns on Last Page Should Be Made As Close As Possible to Equal Length
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jason Hong - 通讯作者:
Jason Hong
Three-year outcomes of off-the-shelf Gore thoracoabdominal multibranch endoprosthesis and physician-modified endografts for complex abdominal and thoracoabdominal aortic aneurysms: Presented at the Thirty-eighth Annual Meeting of the Western Vascular Society, Kauai, HI, September 9-12, 2023.
现货戈尔胸腹多分支人工血管移植物和医生改良型腔内移植物治疗复杂胸腹主动脉瘤的三年结果:于 2023 年 9 月 9 日至 12 日在夏威夷考艾岛举行的第三十八届西方血管学会年会上提交。
- DOI:
10.1016/j.ejvs.2024.11.004 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:6.800
- 作者:
Alexander D. DiBartolomeo;Michelle Manesh;Jason Hong;Jacquelyn K. Paige;Alyssa Pyun;Gregory A. Magee;Fred A. Weaver;Sukgu M. Han - 通讯作者:
Sukgu M. Han
Jason Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hong', 18)}}的其他基金
TWC: Small: CrowdVerify: Using the Crowd to Summarize Web Site Privacy Policies and Terms of Use Policies
TWC:小:CrowdVerify:利用人群总结网站隐私政策和使用条款政策
- 批准号:
1422018 - 财政年份:2014
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
EAGER: Social Cybersecurity: Applying Social Psychology to Improve Cybersecurity
EAGER:社会网络安全:应用社会心理学改善网络安全
- 批准号:
1347186 - 财政年份:2013
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Capturing People's Expectations of Privacy with Mobile Apps by Combining Automated Scanning and Crowdsourcing Techniques
TWC:媒介:协作:结合自动扫描和众包技术,利用移动应用捕捉人们对隐私的期望
- 批准号:
1228813 - 财政年份:2012
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Next Generation Instant Messaging: Communication, Coordination, and Privacy for Mobile, Multimodal, and Location-Aware Devices
下一代即时消息:移动、多模式和位置感知设备的通信、协调和隐私
- 批准号:
0534406 - 财政年份:2006
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
SGER: Re-purposing Web Content through End-User Programming
SGER:通过最终用户编程重新利用 Web 内容
- 批准号:
0646526 - 财政年份:2006
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
相似海外基金
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
- 批准号:
10109956 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
EU-Funded
人口知能を用いたCT画像に基づくLung Cancer mimicking Organizing Pneumonia の診断
利用人工智能基于CT图像模拟组织性肺炎的肺癌诊断
- 批准号:
24K18841 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Self-Organizing Wave Formation in Quasi-2D Shear Turbulence
准二维剪切湍流中的自组织波形成
- 批准号:
24K07313 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Organizing the Fourth High-Performance Computing Security Workshop
会议:组织第四届高性能计算安全研讨会
- 批准号:
2422562 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
GRANTED: Visioning, Organizing, Leading, and Advancing the Research Enterprise at HSIs Institute (VOLARE Institute)
授予:HSI 研究所(VOLARE 研究所)的愿景、组织、领导和推进研究事业
- 批准号:
2342147 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Teachers Organizing Diverse Opportunities Across a STEM Ecosystem
教师在 STEM 生态系统中组织多样化的机会
- 批准号:
2243359 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Empowering Undergraduate Engineers Towards Inclusive Institutional Change Through Research and Organizing
通过研究和组织,赋予本科工程师实现包容性制度变革的能力
- 批准号:
2318338 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Mechanistic Insights into The Role of Microtubule Organizing Centers on Cardiomyocyte Structure and Function
微管组织中心对心肌细胞结构和功能作用的机制见解
- 批准号:
10743120 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Community organizing for equitable and empowered involvement of racialized immigrant communities in health research: transdisciplinary and cross-sectoral mobilization
社区组织,让种族移民社区公平和有权地参与健康研究:跨学科和跨部门动员
- 批准号:
480895 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Miscellaneous Programs
Conference: Interdisciplinary Open Practices Workshop: Understanding & Designing Organizing Practices for Open Ecosystems
会议:跨学科开放实践研讨会:理解
- 批准号:
2332598 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant