EAGER: Unlocking the clumped isotope signatures of marine nitrate

EAGER:解锁海洋硝酸盐的聚集同位素特征

基本信息

  • 批准号:
    2041539
  • 负责人:
  • 金额:
    $ 18.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Nitrogen is a limiting nutrient for life in many marine environments. Its availability shapes the structure and productivity of marine ecosystems. To better understand the cycling of nitrogen, scientists need tools to track the processes that affect nitrogen in nature. Past research into the nitrogen and oxygen stable isotopes of nitrate has enabled pivotal insights into the global nitrogen cycle. At the same time, it has highlighted many unresolved complexities in the cycling of nitrogen. Unfortunately, classical isotope measurements are limited in capturing the processes that transform nitrogen in nature. This is because the resulting isotope signatures are always a combination of at least three factors. First, the isotopic composition of the source compound. Second, the mechanism of the process. And third, the completeness of the transformation. In this EArly-concept Grant for Exploratory Research (EAGER) project, the investigators thus propose to explore a new analytical approach. The goal of the proposed research is to measure the doubly-substituted or “clumped” isotopologs of nitrate for the first time. Clumped nitrate isotopes have the potential to record specific nitrogen transformations. The proposed work could unlock these clumped nitrate isotope signatures as a new tool to study nitrogen in the oceans. In addition to the technology itself, this project will develop open-source software tools for the analysis of isotopolog data to support future work on similar analytes of interest. The proposed project will also create an opportunity for community college students to visit participating laboratories at CU Boulder. In collaboration with the five community colleges of the Denver Metro STEM Alliance for Minority Participation, interested students will meet current CU Boulder students, learn about ongoing undergraduate research, summer research opportunities and 4-year college transfer pathways. The participating community colleges educate a large number of students from underrepresented backgrounds. Creating pathways for these students to continue on to a 4-year degree and a successful career in STEM research and industry fields is a critical piece of the puzzle for increasing diversity in STEM disciplines nationwide.Specifically, the investigators propose to develop a new technological approach to studying the isotopes of marine nitrate by electrospray ionization (ESI)-Orbitrap mass spectrometry. This approach provides a path to quantifying up to 3 new isotopic dimensions of nitrate. These doubly substituted, “clumped” nitrate isotopologs (15N18O, 18O18O, 17O18O) have never before been analytically accessible and could fundamentally transform our understanding of how individual nitrogen cycling pathways interact to shape ocean ecosystems and the global nitrogen cycle. Because they are intramolecular isotopic dimensions, the relative abundances of these clumped nitrate species directly reflect kinetic and equilibrium isotope effects of the processes that form and destroy them. The objectives of this project are thus to 1) establish an ESI-Orbitrap methodology for the reproducible quantification of all singly and the three major doubly substituted isotopologs of nitrate; 2) develop and demonstrate scalable and easily transferable protocols for the extraction and preparation of nitrate from marine samples for ESI-Orbitrap analysis; 3) initiate a pilot study of the clumped nitrate space in marine samples. Beyond its immediate impact on research in chemical oceanography, this project will introduce the geochemistry community to a new generation of intact molecule isotope-ratio mass spectrometry that can be adapted to other oxyanions and metabolites widely studied in marine systems (e.g., sulfate, amino acids, lipids). Developing nitrate as a model for ESI-Orbitrap isotope analytics also will benefit other fields of science including agricultural research, terrestrial ecosystems science, and atmospheric chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氮是许多海洋环境中生命的限制性营养素。它的可用性塑造了海洋生态系统的结构和生产力。为了更好地了解氮的循环,科学家需要工具来跟踪影响自然界中氮的过程。过去对硝酸盐的氮和氧稳定同位素的研究使人们对全球氮循环有了关键的了解。与此同时,它突出了氮循环中许多尚未解决的复杂性。不幸的是,传统的同位素测量在捕捉自然界中氮的转化过程方面受到限制。这是因为产生的同位素特征总是至少三个因素的组合。第一,源化合物的同位素组成。第二,过程的机制。第三,转变的完整性。在这个早期概念的探索性研究资助(EAGER)项目中,研究人员因此建议探索一种新的分析方法。这项研究的目标是首次测量硝酸盐的双取代或“聚集”同位素。成团硝酸盐同位素有可能记录特定的氮转化。这项拟议中的工作可以解开这些聚集的硝酸盐同位素特征,作为研究海洋中氮的新工具。除了技术本身,该项目还将开发用于分析同位素数据的开源软件工具,以支持未来对类似分析物的研究。拟议的项目还将为社区学院的学生创造一个参观CU Boulder参与实验室的机会。与丹佛地铁STEM少数民族参与联盟的五所社区学院合作,感兴趣的学生将与当前的CU Boulder学生见面,了解正在进行的本科研究,夏季研究机会和4年制大学转学途径。参与的社区学院教育了大量来自代表性不足背景的学生。为这些学生继续攻读4年制学位并在STEM研究和工业领域取得成功的途径是增加全国STEM学科多样性的关键部分。具体来说,研究人员建议开发一种新的技术方法,通过电喷雾电离(ESI)-Orbitrap质谱法研究海洋硝酸盐的同位素。这种方法提供了一种途径,以量化多达3个新的同位素维度的硝酸盐。这些双重取代的“聚集”硝酸盐同位素(15 N18 O,18 O 18 O,17 O 18 O)以前从未被分析过,并且可以从根本上改变我们对单个氮循环途径如何相互作用以塑造海洋生态系统和全球氮循环的理解。因为它们是分子内同位素尺寸,这些聚集的硝酸盐物种的相对丰度直接反映形成和破坏它们的过程的动力学和平衡同位素效应。因此,本项目的目标是:1)建立一种ESI-轨道阱方法,用于对硝酸盐的所有单取代和三种主要双取代同位素进行可重复的定量; 2)开发和演示可扩展且易于转移的从海洋样品中提取和制备硝酸盐的方案,用于ESI-轨道阱分析; 3)启动海洋样品中硝酸盐聚集空间的试点研究。除了对化学海洋学研究的直接影响外,该项目还将向地球化学界介绍新一代完整分子同位素比质谱法,该质谱法可适用于在海洋系统中广泛研究的其他含氧阴离子和代谢物(例如,硫酸盐、氨基酸、脂质)。开发硝酸盐作为ESI-Orbitrap同位素分析的模型也将有利于其他科学领域,包括农业研究,陆地生态系统科学和大气化学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian Kopf其他文献

Traumatische Meniskusrisse
  • DOI:
    10.1016/j.orthtr.2022.11.009
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sebastian Kopf;Roland Becker;Romain Seil;Christian Stärke
  • 通讯作者:
    Christian Stärke
Atraumatisches Knochenmarködem des Kniegelenks
  • DOI:
    10.1007/s00142-024-00678-7
  • 发表时间:
    2024-04-04
  • 期刊:
  • 影响因子:
    0.100
  • 作者:
    Lukas N. Münch;Jakob Ackermann;Adrian Deichsel;Lena Eggeling;Daniel Günther;Sebastian Kopf;Brenda Laky;Dominic Mathis;Karl-Friedrich Schüttler;Arasch Wafaisade;Elmar Herbst
  • 通讯作者:
    Elmar Herbst
Metabolic imprints in the hydrogen isotopes of <em>Archaeoglobus fulgidus</em> tetraether lipids
  • DOI:
    10.1016/j.gca.2024.09.032
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeemin H. Rhim;Sebastian Kopf;Jamie McFarlin;Ashley E. Maloney;Harpreet Batther;Carolynn M. Harris;Alice Zhou;Xiahong Feng;Yuki Weber;Shelley Hoeft-McCann;Ann Pearson;William D. Leavitt
  • 通讯作者:
    William D. Leavitt
Structuring a scientific publication—what authors should pay attention to
  • DOI:
    10.1007/s00142-024-00689-4
  • 发表时间:
    2024-05-06
  • 期刊:
  • 影响因子:
    0.100
  • 作者:
    Elmar Herbst;Sebastian Kopf;Daniel Günther
  • 通讯作者:
    Daniel Günther
Writing a research funding proposal
  • DOI:
    10.1007/s00142-024-00690-x
  • 发表时间:
    2024-05-03
  • 期刊:
  • 影响因子:
    0.100
  • 作者:
    Lukas N. Münch;Karl F. Schüttler;Jakob Ackermann;Adrian Deichsel;Lena Eggeling;Daniel Günther;Sebastian Kopf;Brenda Laky;Dominic Mathis;Arasch Wafaisade;Elmar Herbst
  • 通讯作者:
    Elmar Herbst

Sebastian Kopf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sebastian Kopf', 18)}}的其他基金

CAREER: Uncovering the origins and biological purpose of the orphaned branched GDGT temperature biomarker
职业:揭示孤支链 GDGT 温度生物标志物的起源和生物学目的
  • 批准号:
    1945484
  • 财政年份:
    2020
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Establishing the Hydrogen Isotopic Window into Archaeal Lipid Biomarkers
合作研究:建立古细菌脂质生物标志物的氢同位素窗口
  • 批准号:
    1928303
  • 财政年份:
    2019
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Standard Grant
Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
  • 批准号:
    DP240101536
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Discovery Projects
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
  • 批准号:
    10109319
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Launchpad
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Research Grant
Unlocking the archive: reuniting Indigenous languages and their communities
解锁档案:重新统一土著语言及其社区
  • 批准号:
    IM230100544
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Mid-Career Industry Fellowships
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
  • 批准号:
    LP230100371
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Linkage Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
  • 批准号:
    DP240100851
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Discovery Projects
Unlocking the ion selectivity of lithium superionic conductor membranes
解锁锂超离子导体膜的离子选择性
  • 批准号:
    DP240100497
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Discovery Projects
Unlocking the potential of poly(ionic liquids) for electrochemical sensing
释放聚(离子液体)电化学传感的潜力
  • 批准号:
    DP240100014
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Discovery Projects
Unlocking the secrets of modular representations
解开模块化表示的秘密
  • 批准号:
    FL230100256
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Australian Laureate Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了