CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems

职业:多尺度多物理系统的高效、准确的局部时间步进算法

基本信息

  • 批准号:
    2041884
  • 负责人:
  • 金额:
    $ 43.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Mathematical modeling and numerical simulations of multiscale multiphysics processes are of great importance, yet highly challenging as various processes occur at different scales and are coupled together. The issues are more crucial when dealing with complex large-scale systems (for example, those arising in ocean and coastal modeling). The goal of this project is to advance the efficiency and fidelity of local time-stepping algorithms for multiscale multiphysics systems with application to multi-resolution simulations of large-scale geophysical flows. The developed algorithms will efficiently capture the wide range of scales in both space and time to produce accurate and robust simulations of these systems over a long period of time. The research plan is closely integrated with the educational activities of the project which include (i) developing curricular modules in computational mathematics at the Auburn University Summer Science Institute, an educational enrichment program for high school students, to provide young students early exposure to applied mathematics and inspire them to pursue a career in Science, Technology, Engineering and Mathematics (STEM); and (ii) providing interdisciplinary applied mathematics education and research training for both undergraduate and graduate students, including women and underrepresented minorities.Technically, the Principal Investigator will develop accurate and effective hybrid local time-stepping algorithms based on nonoverlapping domain decomposition: on the one hand, explicit schemes with local time steps are used to model processes at small time scales without suffering a severe restriction on the time step size dictated by the global CFL condition. On the other hand, localized exponential time integrators are employed to enable large time step sizes for processes occurring at slow speeds, and to accelerate the computation of matrix exponentials and their products by performing these calculations locally and in parallel. Three main research objectives will be pursued: (i) development and analysis of nonoverlapping localized exponential time differencing methods for stiff nonlinear equations; (ii) study of hybrid local time-stepping algorithms for various heterogeneous problems; and (iii) application of these algorithms to the three-dimensional primitive equations for modeling ocean/atmosphere circulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多尺度多物理过程的数学建模和数值模拟非常重要,但是随着各种过程发生在不同的尺度上并耦合在一起,高度挑战。处理复杂的大型系统(例如,在海洋和沿海建模中出现的问题)时,这些问题更为重要。该项目的目的是提高多尺度多物理系统的局部时间步变算法的效率和保真度,并将其应用于大规模地球物理流的多分辨率模拟。开发的算法将有效地捕获空间和时间中的广泛尺度,以在很长一段时间内对这些系统进行准确而健壮的模拟。该研究计划与该项目的教育活动紧密融合,包括(i)在奥本大学夏季科学学院开发计算数学的课程模块,这是一项针对高中生的教育丰富计划,为年轻学生提供早期接触应用数学并激发他们从事科学,技术,工程技术,工程和数学(词干)的职业; (ii)为本科生和研究生提供跨学科的数学教育和研究培训,包括妇女和代表性不足的少数群体。在技术上,首席研究者将开发准确有效的本地时间稳定算法的准确和有效的混合算法,该算法基于非宽恕域分解的范围,以典型的范围进行典范的范围,以典型的态度进行操作。在时间步长上由全球CFL条件决定。另一方面,采用局部指数时间集成器来启用以缓慢速度发生的过程的大长时间尺寸,并通过在本地和并行执行这些计算来加速矩阵指数及其产品的计算。将实现三个主要的研究目标:(i)对僵硬的非线性方程的非重叠局部指数时间差异方法的开发和分析; (ii)研究各种异质问题的混合局部时间步变算法; (iii)将这些算法应用于建模海洋/气氛循环的三维原始方程。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响审查标准的评估来获得支持的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low regularity integrators for semilinear parabolic equations with maximum bound principles
  • DOI:
    10.1007/s10543-023-00946-2
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
  • 通讯作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
Iterative Methods with Nonconforming Time Grids for Nonlinear Flow Problems in Porous Media
  • DOI:
    10.1007/s40306-022-00486-x
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Thi-Thao-Phuong Hoang;I. Pop
  • 通讯作者:
    Thi-Thao-Phuong Hoang;I. Pop
Fully discrete error analysis of first‐order low regularity integrators for the Allen‐Cahn equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thi Thao Phuong Hoang其他文献

Thi Thao Phuong Hoang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thi Thao Phuong Hoang', 18)}}的其他基金

Global-in-Time Domain Decomposition Methods for Evolution Partial Differential Equations with Applications to Flow and Transport in Fractured Porous Media
演化偏微分方程的全局时域分解方法及其在裂隙多孔介质流动和输运中的应用
  • 批准号:
    1912626
  • 财政年份:
    2019
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant

相似国自然基金

基于特征基函数的准确高效电磁散射积分方程方法研究
  • 批准号:
    62371228
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
MC-ICP-MS高效准确测定Pb同位素标准参考物质绝对比值的分析方法研究
  • 批准号:
    42003017
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
面向复杂多样模糊的准确高效图像模糊检测与评估方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
PGAI技术分析准确性影响机制及高效信息分析方法的研究
  • 批准号:
    11775113
  • 批准年份:
    2017
  • 资助金额:
    78.0 万元
  • 项目类别:
    面上项目
外周血中循环肿瘤细胞的高效分离与准确、灵敏电化学传感研究
  • 批准号:
    21675128
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Continuing Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
  • 批准号:
    2238473
  • 财政年份:
    2022
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant
Biomarker Core
生物标志物核心
  • 批准号:
    10461126
  • 财政年份:
    2021
  • 资助金额:
    $ 43.91万
  • 项目类别:
Biomarker Core
生物标志物核心
  • 批准号:
    10666448
  • 财政年份:
    2021
  • 资助金额:
    $ 43.91万
  • 项目类别:
Biomarker Core
生物标志物核心
  • 批准号:
    10264666
  • 财政年份:
    2021
  • 资助金额:
    $ 43.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了