CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems

职业:多尺度多物理系统的高效、准确的局部时间步进算法

基本信息

  • 批准号:
    2041884
  • 负责人:
  • 金额:
    $ 43.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Mathematical modeling and numerical simulations of multiscale multiphysics processes are of great importance, yet highly challenging as various processes occur at different scales and are coupled together. The issues are more crucial when dealing with complex large-scale systems (for example, those arising in ocean and coastal modeling). The goal of this project is to advance the efficiency and fidelity of local time-stepping algorithms for multiscale multiphysics systems with application to multi-resolution simulations of large-scale geophysical flows. The developed algorithms will efficiently capture the wide range of scales in both space and time to produce accurate and robust simulations of these systems over a long period of time. The research plan is closely integrated with the educational activities of the project which include (i) developing curricular modules in computational mathematics at the Auburn University Summer Science Institute, an educational enrichment program for high school students, to provide young students early exposure to applied mathematics and inspire them to pursue a career in Science, Technology, Engineering and Mathematics (STEM); and (ii) providing interdisciplinary applied mathematics education and research training for both undergraduate and graduate students, including women and underrepresented minorities.Technically, the Principal Investigator will develop accurate and effective hybrid local time-stepping algorithms based on nonoverlapping domain decomposition: on the one hand, explicit schemes with local time steps are used to model processes at small time scales without suffering a severe restriction on the time step size dictated by the global CFL condition. On the other hand, localized exponential time integrators are employed to enable large time step sizes for processes occurring at slow speeds, and to accelerate the computation of matrix exponentials and their products by performing these calculations locally and in parallel. Three main research objectives will be pursued: (i) development and analysis of nonoverlapping localized exponential time differencing methods for stiff nonlinear equations; (ii) study of hybrid local time-stepping algorithms for various heterogeneous problems; and (iii) application of these algorithms to the three-dimensional primitive equations for modeling ocean/atmosphere circulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多尺度多物理场过程的数学建模和数值模拟非常重要,但由于各种过程发生在不同的尺度上并且相互耦合,因此具有很高的挑战性。在处理复杂的大规模系统(例如,在海洋和海岸建模中产生的那些系统)时,这些问题更为关键。本项目旨在提高多尺度多物理场系统的局部时间步进算法的效率和保真度,并将其应用于大尺度地球物理流的多分辨率模拟。所开发的算法将有效地捕获空间和时间上的大范围尺度,从而在很长一段时间内对这些系统进行准确和稳健的模拟。该研究计划与该项目的教育活动紧密结合,其中包括(i)在奥本大学夏季科学研究所开发计算数学课程模块,这是一个针对高中生的教育丰富计划,为年轻学生提供早期应用数学的机会,并激励他们追求科学,技术,工程和数学(STEM)的职业生涯;(ii)为本科生和研究生提供跨学科的应用数学教育和研究培训,包括妇女和代表性不足的少数民族。从技术上讲,首席研究员将开发基于非重叠域分解的准确有效的混合局部时间步进算法:一方面,具有局部时间步长的显式方案用于小时间尺度上的过程建模,而不会受到全局CFL条件所规定的时间步长的严格限制。另一方面,局部指数时间积分器被用来实现在缓慢速度下发生的过程的大时间步长,并通过局部并行执行这些计算来加速矩阵指数及其乘积的计算。主要有三个研究目标:(i)发展和分析刚性非线性方程的非重叠局部指数时差方法;(ii)研究各种异构问题的混合局部时间步进算法;(3)这些算法在模拟海洋/大气环流的三维原始方程中的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low regularity integrators for semilinear parabolic equations with maximum bound principles
  • DOI:
    10.1007/s10543-023-00946-2
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
  • 通讯作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
Iterative Methods with Nonconforming Time Grids for Nonlinear Flow Problems in Porous Media
  • DOI:
    10.1007/s40306-022-00486-x
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Thi-Thao-Phuong Hoang;I. Pop
  • 通讯作者:
    Thi-Thao-Phuong Hoang;I. Pop
Fully discrete error analysis of first‐order low regularity integrators for the Allen‐Cahn equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thi Thao Phuong Hoang其他文献

Thi Thao Phuong Hoang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thi Thao Phuong Hoang', 18)}}的其他基金

Global-in-Time Domain Decomposition Methods for Evolution Partial Differential Equations with Applications to Flow and Transport in Fractured Porous Media
演化偏微分方程的全局时域分解方法及其在裂隙多孔介质流动和输运中的应用
  • 批准号:
    1912626
  • 财政年份:
    2019
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant

相似海外基金

Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Continuing Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
  • 批准号:
    24K20787
  • 财政年份:
    2024
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
  • 批准号:
    2305106
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Standard Grant
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
  • 批准号:
    478042
  • 财政年份:
    2023
  • 资助金额:
    $ 43.91万
  • 项目类别:
    Operating Grants
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
  • 批准号:
    10542443
  • 财政年份:
    2022
  • 资助金额:
    $ 43.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了