CAREER: Interface-mediated Ionic Transport in Mismatched Complex Oxide Heterostructures: Role of Misfit Dislocations
职业:错配复合氧化物异质结构中界面介导的离子传输:错配位错的作用
基本信息
- 批准号:2042311
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports integrated research, educational activities, and outreach initiatives focused on utilizing computer simulations to advance the fundamental understanding of the movement of ions at interfaces in oxide heterostructures. In solids, this ionic movement offers the basis of operation for electrochemical energy conversion and storage technologies. Oxide heterostructures are an intriguing class of nanomaterials created by joining two dissimilar oxides that are significantly smaller than the width of a human hair. As a whole, they exhibit superior properties than their individual constituents, and they are responsible for novel applications in numerous nanoscale energy technologies. A vital application of oxide heterostructures is their use as solid oxide fuel cell electrolytes, which facilitate easy passage of oxygen ions for generating electricity in the cell. At these electrolyte interfaces, crystallographic imperfections known as "misfit dislocations" are formed to alleviate the strain that would otherwise arise when joining two materials with dissimilar sizes. Misfit dislocations at interfaces of oxide heterostructures are often held accountable for behaving as pathways for oxygen ion transport. However, standard approaches cannot predict if misfit dislocations enable faster movement of ions or slow them down. This research aims to develop advanced theoretical and computational tools to understand the fundamental ionic transport mechanisms at misfit dislocations. Various computer models will be implemented to trace the motion of ions and predict the fundamental atomic scale factors that lead to either faster or slower movement of ions across oxide interfaces. This basic knowledge will be instrumental for designing fuel cell electrolytes based on advanced oxide heterostructures that exhibit enhanced rate of ion mobility and thus better performance. The computational framework developed in this research will serve as a paradigm for future design of superior electrolytes and accelerate the use of environmentally friendly solid oxide fuel cell technology.The research component of this project will be tightly integrated with the educational activities to increase public awareness regarding alternative energy resources and their benefits to the society. This project will train the next-generation renewable energy workforce by offering interdisciplinary training to graduate and undergraduate students. Students will receive opportunities to visit national laboratories to gain valuable experience in modeling of energy materials and broaden their horizons. Female and minority students will be recruited to engage in renewable energy research, thus promoting underrepresented communities in science and engineering by providing pathways into and retention in advanced degrees. Research output will be used to develop undergraduate and graduate coursework, and short courses and simplified computer demos for K-12 students, thus reaching a broader pool of students interested in energy research. The computational tools developed in this project will be made accessible to the scientific community as open source software.TECHNICAL SUMMARYThis CAREER award supports integrated research, educational activities, and outreach initiatives focused on developing a multiscale computational framework to advance the fundamental understanding of ionic transport mechanisms across interfaces in oxide heterostructures.Oxide heterostructures, an intriguing class of nanomaterials fabricated by joining two dissimilar oxides, have numerous applications in a wide range of energy technologies. An important application of oxide heterostructures is their use as solid oxide fuel cell electrolytes. The research component of this project is motivated by experimental observations: Several experiments report that misfit dislocations ubiquitous at interfaces of mismatched oxide heterostructures enhance ionic transport, while some experiments suggest that they slow down ionic transport. Conventional approaches cannot predict the atomistic origin for this enhancement or impediment since the basic atomistic mechanisms governing ionic transport at misfit dislocations are not well understood.The objective of this research is to elucidate the fundamental ionic transport mechanisms at misfit dislocations by studying their intricate interaction with point defects and dopants. The principal hypothesis is that the fundamental nearest neighbor model of defect diffusion will come into play at misfit dislocations. The PI and his team will build a novel multiscale framework that integrates density functional theory and molecular dynamics to study defect thermodynamics with a new kinetic lattice Monte Carlo model to study defect kinetics at misfit dislocations. This multiscale framework will assist in establishing the basic connection between misfit dislocation structure and functionality. The research will advance the state of knowledge pertaining to the crucial role of interfaces and extended defects in shaping new functionalities of oxide heterostructures. The fundamental science thus unraveled will offer strategies to ultimately control the impact of misfit dislocations and guide future design and synthesis of next-generation solid oxide fuel cell electrolytes.The research component of this project will be tightly integrated with the educational activities to increase public awareness regarding alternative energy resources and their benefits to the society. This project will train the next-generation renewable energy workforce by offering interdisciplinary training to graduate and undergraduate students. Students will receive opportunities to visit national laboratories to gain valuable experience in modeling of energy materials and broaden their horizons. Female and minority students will be recruited to engage in renewable energy research, thus promoting underrepresented communities in science and engineering by providing pathways into and retention in advanced degrees. Research output will be used to develop undergraduate and graduate coursework, and short courses and simplified computer demos for K-12 students, thus reaching a broader pool of students interested in energy research. The computational tools developed in this project will be made accessible to the scientific community as open source software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持综合研究、教育活动和推广活动,重点是利用计算机模拟来推进对氧化物异质结构界面离子运动的基本理解。在固体中,这种离子运动为电化学能量转换和存储技术提供了操作基础。氧化物异质结构是一类有趣的纳米材料,它是由两种明显小于人类头发宽度的不同氧化物结合而成的。作为一个整体,它们表现出比单个成分更优越的性能,并且它们在许多纳米级能源技术中具有新的应用。氧化物异质结构的一个重要应用是用作固体氧化物燃料电池电解质,它使氧离子容易通过,从而在电池中发电。在这些电解质界面上,形成了称为“错配位错”的晶体缺陷,以减轻连接两种尺寸不同的材料时产生的应变。氧化物异质结构界面的错配位错通常被认为是氧离子传输的途径。然而,标准方法无法预测错配位错是使离子运动更快还是减慢它们的速度。本研究旨在开发先进的理论和计算工具来理解错配位错的基本离子传输机制。将实施各种计算机模型来跟踪离子的运动,并预测导致离子在氧化物界面上更快或更慢运动的基本原子尺度因素。这些基础知识将有助于设计基于先进氧化物异质结构的燃料电池电解质,从而提高离子迁移率,从而提高性能。本研究开发的计算框架将作为未来设计优质电解质的范例,并加速环保固体氧化物燃料电池技术的使用。该项目的研究部分将与教育活动紧密结合,以提高公众对替代能源及其对社会的好处的认识。该项目将通过为研究生和本科生提供跨学科培训,培养下一代可再生能源劳动力。学生将有机会参观国家实验室,获得能源材料建模的宝贵经验,拓宽视野。女性和少数族裔学生将被招募从事可再生能源研究,从而通过提供进入和保留高级学位的途径,促进科学和工程领域代表性不足的社区。研究成果将用于开发本科和研究生课程,以及K-12学生的短期课程和简化的计算机演示,从而接触到更广泛的对能源研究感兴趣的学生。在这个项目中开发的计算工具将作为开源软件提供给科学界。该职业奖支持综合研究、教育活动和推广活动,重点是开发多尺度计算框架,以推进对氧化物异质结构中跨界面离子传输机制的基本理解。氧化物异质结构是一类有趣的纳米材料,由两种不同的氧化物连接而成,在广泛的能源技术中有着广泛的应用。氧化物异质结构的一个重要应用是用作固体氧化物燃料电池电解质。这个项目的研究部分是由实验观察驱动的:一些实验报告说,在不匹配的氧化物异质结构的界面上普遍存在的错配位错增强了离子传输,而一些实验表明它们减慢了离子传输。传统的方法不能预测这种增强或障碍的原子起源,因为控制错配位错离子传输的基本原子机制还没有得到很好的理解。本研究的目的是通过研究错配位错与点缺陷和掺杂的复杂相互作用来阐明错配位错的基本离子传输机制。主要假设是缺陷扩散的基本最近邻模型将在错配位错中起作用。PI和他的团队将建立一个新的多尺度框架,集成密度泛函理论和分子动力学来研究缺陷热力学,并使用新的动力学晶格蒙特卡罗模型来研究失配位错时的缺陷动力学。这种多尺度框架将有助于建立错配位错结构和功能之间的基本联系。该研究将推进有关界面和扩展缺陷在形成氧化异质结构新功能中的关键作用的知识状态。由此揭开的基础科学将为最终控制错配位错的影响提供策略,并指导下一代固体氧化物燃料电池电解质的设计和合成。该项目的研究部分将与教育活动紧密结合,以提高公众对替代能源及其对社会的好处的认识。该项目将通过为研究生和本科生提供跨学科培训,培养下一代可再生能源劳动力。学生将有机会参观国家实验室,获得能源材料建模的宝贵经验,拓宽视野。女性和少数族裔学生将被招募从事可再生能源研究,从而通过提供进入和保留高级学位的途径,促进科学和工程领域代表性不足的社区。研究成果将用于开发本科和研究生课程,以及K-12学生的短期课程和简化的计算机演示,从而接触到更广泛的对能源研究感兴趣的学生。在这个项目中开发的计算工具将作为开源软件提供给科学界。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Throughput Prediction of Thermodynamic Stabilities of Dopant-Defect Clusters at Misfit Dislocations in Perovskite Oxide Heterostructures
- DOI:10.1021/acs.jpcc.3c02367
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Chloe Marzano;P. Dholabhai
- 通讯作者:Chloe Marzano;P. Dholabhai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratik Dholabhai其他文献
Pratik Dholabhai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Molecular control of blood vessel types at the regenerative interface for engineering of osteogenic and angiogenic periosteum mimetic
再生界面血管类型的分子控制,用于成骨和血管生成骨膜模拟物的工程
- 批准号:
10750087 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Long-term and Mediated NO-Release Silicone Polymers for Blood Interface Devices
用于血液接口装置的长期介导不释放有机硅聚合物
- 批准号:
10654071 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Lung repair mechanisms mediated by the immune-fibroblast interface
免疫成纤维细胞界面介导的肺修复机制
- 批准号:
10697383 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
RUI: Mechanistic Understanding of the Electrode-catalyst Interface in Plasmon-mediated Oxygen Evolution Reaction
RUI:等离子体介导的析氧反应中电极-催化剂界面的机理理解
- 批准号:
2102196 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Investigations of kinase-mediated cell signaling pathway modulation at the vector-pathogen-livestock interface in vector-borne livestock diseases.
在媒介传播的牲畜疾病中媒介-病原体-牲畜界面激酶介导的细胞信号通路调节的研究。
- 批准号:
RGPIN-2018-06036 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of gut microbiota/metabolite interface-mediated hepatic inflammation
肠道微生物群/代谢物界面介导的肝脏炎症机制
- 批准号:
10678944 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Mechanisms of gut microbiota/metabolite interface-mediated hepatic inflammation
肠道微生物群/代谢物界面介导的肝脏炎症机制
- 批准号:
10467420 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
CAREER: Neural Dynamics of Sleep-Mediated Learning in Brain Computer Interface (BCI) Applications
职业:脑机接口 (BCI) 应用中睡眠介导学习的神经动力学
- 批准号:
2047529 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Structure and Interactions at the Cell-Matrix Interface Mediated by Collagen VI
胶原 VI 介导的细胞-基质界面的结构和相互作用
- 批准号:
BB/V015826/1 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Investigations of kinase-mediated cell signaling pathway modulation at the vector-pathogen-livestock interface in vector-borne livestock diseases.
在媒介传播的牲畜疾病中媒介-病原体-牲畜界面激酶介导的细胞信号通路调节的研究。
- 批准号:
RGPIN-2018-06036 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual