CAREER: Predicting plant functional trait variation across spatial, temporal and biological scales
职业:预测植物功能性状在空间、时间和生物尺度上的变化
基本信息
- 批准号:2042453
- 负责人:
- 金额:$ 106.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Variability is an inherent property of life on Earth. As a result, understanding the causes and consequences of variability is central for understanding the nature of life itself. As mean temperatures increase around the world, many areas are simultaneously experiencing increasing climatic variability. Yet, there is no theory that predicts the variability of natural systems. This research will develop a model for predicting the variability of plant function across scales of biological organization, from organisms to ecosystems. This research will focus on plant functional traits (morphological, physiological, and phenological characteristics) and environmental variability because functional traits link plant performance to ecosystem processes. Further, gradients of environmental variability are ubiquitous in nature across all spatial and temporal scales, and underlie prominent ecological and evolutionary hypotheses. In addition to developing new theories and generating new data essential for predicting species responses to increasing climatic variability, this project will address a national training need in data literacy, data science, and working with different scientific disciplines. To do so, undergraduate course content and training modules will be designed following open science principles. Course content will leverage open biological and environmental data produced by NSF investments in research and infrastructure, including the National Ecological Observatory Network (NEON), the Long-Term Ecological Research (LTER) network, Integrated Digitized Biocollections (iDigBio), and the Global Biodiversity Information Facility (GBIF). Additionally, this project will support the training and professional development of students from historically underrepresented groups in science, contributing to a diverse, skilled, and innovative STEM workforce. Specifically, this research will quantify emergent properties of functional trait variation by decomposing trait-trait and trait-environment relationships; testing the environmental heterogeneity and climatic variability hypotheses; and linking trait variation at the organismal scale to patterns of species distributions. At a continental scale, this project will leverage data from NEON sites across latitude encompassing the eastern United States and Puerto Rico to quantify plant trait variation across spatial, temporal and biological scales. This project will also characterize scaling between plant functional trait variation, environmental heterogeneity, and climatic variability across temperate and tropical mountains, where abiotic gradients in temperature and precipitation are steep in space and time. Measurements of plant abundance, growth, functional traits, and satellite observations of vegetation indices will form one of the few explicit tests of the environmental heterogeneity and the climatic variability hypotheses across spatiotemporal scales. Ultimately, this research will resolve major disparities in the measurement, quantification, and modeling of functional trait variation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可变性是地球上生命的一种固有属性。因此,理解可变性的原因和后果对于理解生命本身的本质是至关重要的。随着世界各地平均气温的上升,许多地区同时经历着越来越多的气候变化。然而,没有任何理论可以预测自然系统的可变性。这项研究将开发一个模型,用于预测从生物到生态系统的生物组织尺度上植物功能的可变性。这项研究将侧重于植物功能性状(形态、生理和物候特征)和环境变异性,因为功能性状将植物表现与生态系统过程联系在一起。此外,环境变异性的梯度在自然界的所有空间和时间尺度上都是无处不在的,并且是突出的生态和进化假说的基础。除了开发新的理论和生成对预测物种对日益增加的气候变异性的反应至关重要的新数据外,该项目还将满足国家在数据素养、数据科学和与不同科学学科合作方面的培训需求。为此,将遵循开放科学原则设计本科课程内容和培训模块。课程内容将利用NSF在研究和基础设施方面的投资产生的公开生物和环境数据,包括国家生态观测网络(NEON)、长期生态研究(LTER)网络、综合数字化生物收集(IDigBio)和全球生物多样性信息基金(GBIF)。此外,该项目将支持来自科学界历史上代表性不足的群体的学生的培训和专业发展,为培养一支多样化、有技能和创新的STEM劳动力做出贡献。具体地说,这项研究将通过分解性状-性状和性状-环境关系,检验环境异质性和气候变异性假说,并将生物尺度上的性状变异与物种分布模式联系起来,来量化功能性状变异的出现特性。在大陆尺度上,该项目将利用横跨美国东部和波多黎各的纬度地区霓虹灯站点的数据,以量化空间、时间和生物尺度上的植物特征变化。该项目还将描述温带和热带山区植物功能性状变异、环境异质性和气候变异性之间的比例关系,这些山脉的温度和降水的非生物梯度在空间和时间上都很陡峭。对植物丰度、生长、功能特征的测量和植被指数的卫星观测将形成对环境异质性和气候变异性假设的为数不多的跨时空尺度的明确测试之一。最终,这项研究将解决在功能特征变化的测量、量化和建模方面的主要差距。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Specific leaf area is lower on ultramafic than on neighbouring non-ultramafic soils
- DOI:10.1080/17550874.2022.2160673
- 发表时间:2022-12
- 期刊:
- 影响因子:1.5
- 作者:Thomas J. Samojedny;Claudia Garnica-Díaz;Dena L. Grossenbacher;G. Adamidis;P. Dimitrakopoulos;S. Siebert;M. Spasojevic;C. Hulshof;N. Rajakaruna
- 通讯作者:Thomas J. Samojedny;Claudia Garnica-Díaz;Dena L. Grossenbacher;G. Adamidis;P. Dimitrakopoulos;S. Siebert;M. Spasojevic;C. Hulshof;N. Rajakaruna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Hulshof其他文献
Integrative and Comparative Biology
综合与比较生物学
- DOI:
10.1017/s1049096522000907 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kira D. McEntire;Matthew Gage;Richard Gawne;Michael G. Hadfield;Catherine Hulshof;Michele A. Johnson;Danielle L. Levesque;Joan Segura;Noa Pinter - 通讯作者:
Noa Pinter
Catherine Hulshof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Hulshof', 18)}}的其他基金
MSB-ECA: Climate change and plants on unusual soils: Detecting and modeling ecosystem response of Caribbean serpentine floras
MSB-ECA:气候变化和异常土壤上的植物:检测和模拟加勒比蛇纹石植物群的生态系统响应
- 批准号:
1833358 - 财政年份:2018
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
MSB-ECA: Climate change and plants on unusual soils: Detecting and modeling ecosystem response of Caribbean serpentine floras
MSB-ECA:气候变化和异常土壤上的植物:检测和模拟加勒比蛇纹石植物群的生态系统响应
- 批准号:
1638581 - 财政年份:2016
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2012
2012 财年 NSF 生物学博士后奖学金
- 批准号:
1202801 - 财政年份:2013
- 资助金额:
$ 106.43万 - 项目类别:
Fellowship Award
相似海外基金
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
- 批准号:
2343738 - 财政年份:2024
- 资助金额:
$ 106.43万 - 项目类别:
Continuing Grant
Predicting plant growth in naturally fluctuating conditions
预测自然波动条件下的植物生长
- 批准号:
BB/Y513945/1 - 财政年份:2024
- 资助金额:
$ 106.43万 - 项目类别:
Research Grant
BRC-BIO: Environmental variation and the disruption of biotic local adaptation: Predicting consequences of changing microbial interactions for plant populations
BRC-BIO:环境变化和生物局部适应的破坏:预测微生物相互作用变化对植物种群的影响
- 批准号:
2312572 - 财政年份:2023
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310356 - 财政年份:2023
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310355 - 财政年份:2023
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310357 - 财政年份:2023
- 资助金额:
$ 106.43万 - 项目类别:
Standard Grant
Crops & Soil - Predicting the host plant associations of insect herbivores using community-level interaction data.
农作物
- 批准号:
2746424 - 财政年份:2022
- 资助金额:
$ 106.43万 - 项目类别:
Studentship
Predicting the durability and resistance risk of crop protection measures through experimental evolution of plant pathogens
通过植物病原体的实验进化预测作物保护措施的耐久性和抗性风险
- 批准号:
BB/W009935/1 - 财政年份:2022
- 资助金额:
$ 106.43万 - 项目类别:
Fellowship
NSF Postdoctoral Fellowship in Biology FY 2021: Predicting how climate change will impact insect adaptation to host plant resistance
2021 财年 NSF 生物学博士后奖学金:预测气候变化将如何影响昆虫对宿主植物抗性的适应
- 批准号:
2109662 - 财政年份:2021
- 资助金额:
$ 106.43万 - 项目类别:
Fellowship Award
Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
- 批准号:
10005708 - 财政年份:2020
- 资助金额:
$ 106.43万 - 项目类别: