CAREER: Advanced Surface Coating of Metallic Powders by Vibration-Enhanced High-Power Impulse Magnetron Sputtering for Sintering-Based Manufacturing

职业:通过振动增强高功率脉冲磁控溅射对金属粉末进行先进表面涂层,用于基于烧结的制造

基本信息

  • 批准号:
    2042982
  • 负责人:
  • 金额:
    $ 52.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Sintering is one of the most practical manufacturing processes in producing density-controlled materials from powder feedstock. However, producing industrially applicable powder alloy precursors is challenging. Although pre-mixing pure metal powders have allowed a wide range of compositions by conventional sintering, rapid heating and cooling in modern sintering techniques inevitably results in new but unwanted chemical gradients, as well as microstructural and property anisotropy. This Faculty Early Career Development (CAREER) award will investigate a high-power impulse magnetron sputtering process as an advanced technology to modify the surface of metallic powders. The deposition of thin films on the powders forming core/shell systems can provide solutions to make different alloys with more homogeneous and controlled microstructures when used as powder feedstock. This new class of powders will enable a reliable supply of raw materials for cost-effective sintering of reproducible components in the aerospace, automotive, energy, and healthcare industries. The integrated educational and outreach activities of this project will broadly concentrate on: 1) educating and training women and underrepresented minorities as the future generation of highly-skilled leaders in advanced manufacturing, 2) establishing a pipeline of diverse undergraduate students to pursue graduate studies in collaboration with James Madison University in Virginia through special summer programs, and 3) implementing an online set of virtual laboratories in advanced materials characterization of core/shell structures as well as materials processing. The overall research objective of this project is to establish the scientific underpinnings for the surface modification of micro- and nano-powders into core/shell systems that promote three-phase transformations in sintering-based processes. The core/shell of various combinations (e.g., aluminum-copper, titanium-copper, copper-chromium and nickel-chromium, etc.) will be the eutectic compositions for modeling because of their industrial relevance, an ability to form precipitation hardening alloys, and excellent high-temperature properties. It is hypothesized that high-power impulse magnetron sputtering combined with the vibrational motions of powder holders can achieve conformal thin films on powders, which are desired to produce favorable microstructures. To test the hypothesis, the project will study sputtering discharges to understand the nucleation and growth mechanism of thin films on complex geometries such as spherical powders when including vibrations. This research also aims to understand the role of powder-film interface in the two-phase core/shell diffusion couple and its effect on the final part microstructure from sintering. The combined strategy of the project will lead to a new method of manufacturing core/shell materials suitable for modern sintering processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
烧结是利用粉末原料生产密度可控材料的最实用的制造工艺之一。然而,生产工业应用的粉末合金前驱体是具有挑战性的。尽管通过传统的烧结方法,预混纯金属粉末的成分范围很广,但现代烧结技术的快速加热和快速冷却不可避免地会导致新的但不必要的化学梯度,以及组织和性能的各向异性。该学院早期职业发展奖将研究高功率脉冲磁控溅射工艺,作为一种先进的金属粉末表面改性技术。在形成核/壳体系的粉末上沉积薄膜可以使不同的合金在用作粉末原料时组织更加均匀和可控。这种新型粉末将为航空航天、汽车、能源和医疗保健行业的可再生部件的成本效益烧结提供可靠的原材料供应。该项目的综合教育和外展活动将主要集中在:1)教育和培训妇女和代表不足的少数族裔,作为先进制造业的下一代高技能领导者;2)建立一个多样化的本科生渠道,与弗吉尼亚州的詹姆斯·麦迪逊大学合作,通过特别的暑期项目进行研究生学习;以及3)实施一套在线虚拟实验室,研究核心/外壳结构的先进材料表征以及材料加工。该项目的总体研究目标是为将微米和纳米粉末表面改性为促进烧结基过程中三相转变的核/壳系统奠定科学基础。各种组合的核心/外壳(例如,铝-铜、钛-铜、铜-铬和镍-铬等)将是用于建模的共晶成分,因为它们与工业相关,形成沉淀硬化合金的能力,以及优异的高温性能。假设高功率脉冲磁控溅射结合持粉器的振动运动可以在粉末上获得共形薄膜,这是产生良好微结构的必要条件。为了验证这一假设,该项目将研究溅射放电,以了解包括振动在内的复杂几何形状(如球形粉末)上薄膜的成核和生长机制。本研究还旨在了解粉末-薄膜界面在核/壳两相扩散偶中的作用及其对烧结最终零件组织的影响。该项目的综合战略将带来一种制造适用于现代烧结工艺的核/壳材料的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlling preferential growth of chromium – Nitrogen R-HiPIMS and R-DCMS films by substrate magnetic biasing
  • DOI:
    10.1016/j.apsusc.2021.151113
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    S. Vargas;D. S. Galeano-Osorio;C. Castano
  • 通讯作者:
    S. Vargas;D. S. Galeano-Osorio;C. Castano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Castano其他文献

Carlos Castano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Standard Grant
Automated surface-bound oligoseed DNA amplification enabling advanced therapies and diagnostics
自动表面结合寡种子 DNA 扩增可实现先进的治疗和诊断
  • 批准号:
    10056281
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Collaborative R&D
WetCat-PFAS: Surface wettability on heterogeneous advanced oxidation catalysis for PFAS degradation
WetCat-PFAS:多相高级氧化催化 PFAS 降解的表面润湿性
  • 批准号:
    EP/X02850X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Fellowship
Developing Advanced Warnings and Forecasting Satellite Surface Charging Risk
开发高级预警并预测卫星表面充电风险
  • 批准号:
    573087-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    University Undergraduate Student Research Awards
Design, Fabrication, and Surface Modification of Multifunctional Nanocomposites Used for Advanced Biosensing Devices
用于先进生物传感设备的多功能纳米复合材料的设计、制造和表面改性
  • 批准号:
    RGPIN-2021-03859
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC Green Surface Engineering for Advanced Manufacturing (Green SEAM) Network
NSERC 先进制造绿色表面工程 (Green SEAM) 网络
  • 批准号:
    493955-2016
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Strategic Network Grants Program
Project ADEPT - Advanced Dynamic Electrochemical Polishing Techniques to Improve Additive Manufactured Surface Conditions
ADEPT 项目 - 先进的动态电化学抛光技术可改善增材制造的表面状况
  • 批准号:
    10034006
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Collaborative R&D
Design, Fabrication, and Surface Modification of Multifunctional Nanocomposites Used for Advanced Biosensing Devices
用于先进生物传感设备的多功能纳米复合材料的设计、制造和表面改性
  • 批准号:
    DGDND-2021-03859
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Paradigm Shift of Surface Melting by Advanced In-Situ Observation Technique: To Organic Crystals from Ice
通过先进的原位观测技术实现表面熔化的范式转变:从冰中转化为有机晶体
  • 批准号:
    22H01972
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Designing, developing and validating advanced materials and surface modifications for innovative biomaterials and implants
设计、开发和验证创新生物材料和植入物的先进材料和表面改性
  • 批准号:
    RGPIN-2022-04179
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了